β-Hydroxypiperidinecarboxylates: additions to the chiral pool from bakers' yeast reductions of $\boldsymbol{\beta}$-ketopiperidinecarboxylates

David W. Knight, ${ }^{a * \dagger} \dagger$ Neil Lewis, ${ }^{a}$ Andrew C. Share ${ }^{a}$ and David Haigh ${ }^{b}$
a Chemistry Department, University Park, Nottingham, UK NG7 2RD
${ }^{b}$ SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, UK CM19 5AW

Received (in Cambridge) 18th September 1998, Accepted 7th October 1998

Abstract

Reduction of the piperidine keto esters 16-19 using fermenting bakers' yeast provides high yields of the corresponding hydroxy esters $\mathbf{2 0}, \mathbf{2 6}, \mathbf{3 2}$ and $\mathbf{3 7}$ respectively, exclusively as the cis-diastereoisomers and with good levels ($\geqslant 80 \%$) of enantiomeric enrichment. The relative stereochemistries of the products were deduced from NMR data while the absolute configurations were determined by degradation to known piperidinemethanol derivatives or, in the case of hydroxy ester $\mathbf{3 7}$, by homologation to (R)-3-quinuclidinol $\mathbf{4 1 b}$.

The impact of biological methods on organic synthesis has been extremely significant in recent times, particularly for the many contributions made to asymmetric synthesis. An attractive feature of much of this methodology is that the biological catalysts can be treated in a similar fashion to standard laboratory reagents, often needing no special handling or experience, beyond the normal requirements of cleanliness and reactant and solvent purity. ${ }^{1}$ Notable examples are the many applications of lipases and of fermenting bakers' yeast. The latter is especially remarkable as, in many examples, this naturally complex living mixture of enzyme systems is capable of effecting highly enantioselective reductions, along with a variety of other useful transformations, without any effort having to be made to purify the organism although, in some cases, various additives have been found to have a beneficial effect. ${ }^{2}$ Perhaps the most widely applied transformation using bakers' yeast is the reduction of β-keto esters 1 to the corresponding β-hydroxy esters 2

Scheme 1
which often results in excellent chemical and optical yields. To a large extent, this methodology, at least with simple, saturated acetoacetate derivatives, has been superceded by the highly efficient Noyori hydrogenation methods using rhodium(I)-BINAP complexes as the catalysts. ${ }^{3}$ However, for cyclic β-keto esters 3, this latter method is not so useful as there is already an asymmetric (racemic) centre in the reduction substrate. In such cases, bakers' yeast has been shown to be particularly effective in delivering cis- β-hydroxy esters with good to excellent levels of enantiomeric enrichment; ${ }^{2}$ examples include both 5 - and 6 -membered carbocycles ${ }^{4}$ and some related sulfur-containing heterocycles ${ }^{5}$ along with ethyl N-benzyl-3-oxopiperidine-4carboxylate, the latter by using a large excess of fermenting yeast in the absence of added sugar. ${ }^{6}$ We have reported that the 3 -oxoproline derivative 4 is similarly reduced by fermenting bakers' yeast to the hydroxyproline $\mathbf{5}$ with 78% enantiomeric

[^0] 912, Cardiff, UK CF1 3TB.
enrichment; amongst other uses, this initial product can be used to prepare the $(-)$-Geissman-Waiss lactone $\mathbf{6},{ }^{7}$ useful as a precursor to many pyrrolizidine alkaloids. ${ }^{8}$

In view of the foregoing, we were intrigued by the possibility that piperidine-based β-keto esters could be similarly reduced to the corresponding disubstituted piperidines, which would be potentially useful additions to the chiral pool. Additionally, the completely deprotected derivatives of the anticipated initial hydroxy esters display significant activity on the functioning of the central γ-aminobutyric acid (GABA) neurotransmitter system and are therefore of interest in therapies for various psychiatric and neurological disorders. ${ }^{9}$ 4-Hydroxypiperidine3 -carboxylic acid is a potent substrate-competitive inhibitor of the neuronal GABA uptake process ${ }^{10}$ while the isomeric 3-hydroxy-4-carboxylic acid is a specific GABA receptor agonist. ${ }^{11}$ In mechanistic terms, such reactions can occur in two ways, either by reduction of the carbon-carbon double bond in the enol forms 7 of the keto esters or by a kinetic resolution wherein one enantiomer of the β-keto ester is more rapidly reduced and the remaining enantiomer undergoes facile racemization. The latter mechanism seems the more likely, as simple carbonyls such as benzaldehyde can be successfully reduced by bakers' yeast, ${ }^{1}$ as can 2,2 -dimethylcyclohexane-1,3dione 8 , which cannot exist in a conjugated enolic form, to give the hydroxy ketone $9 .{ }^{12}$ However, to our disappointment, various 4-keto-3-pyrrolidinecarboxylate derivatives, isomeric with the successful yeast substrate $\mathbf{4}$, were not efficiently

7

9

Scheme 3
reduced by bakers' yeast. ${ }^{13}$ With this uncertainty in mind, we proceeded to the preparation of examples of the three possible keto-piperidinecarboxylate isomers $\mathbf{1 0}-\mathbf{1 2}$, which we hoped would be suitable for yeast reduction; herein, we report in full on our work in this area, some of which has appeared in preliminary form. ${ }^{14}$

Results and discussion

The first route chosen to a 3-keto-2-carboxylate isomer $\mathbf{1 0}$ featured a rhodium-catalysed intramolecular carbenoid $\mathrm{N}-\mathrm{H}$ insertion reaction using the α-diazo- β-keto ester 13, as described by Rapoport. ${ }^{15}$ However, in our hands, the approach work proved somewhat capricious, yields of the final piperidine-2-carboxylate were relatively poor and the desired product was difficult to separate from other products. We therefore turned to an alternative approach, also developed by the Rapoport group, which relies on a Dieckmann cyclisation to establish the piperidine ring. ${ }^{16}$ Thus, N-alkylation of pyrrolidin2 -one by ethyl bromoacetate provided the homologous ester 14, which was exhaustively hydrolysed to give the amino diacid hydrochloride 15a. Subsequent esterification led to the diester $\mathbf{1 5 b}$ and thence to the N-tert-butoxycarbonyl (Boc) derivative 15c, following treatment with Boc anhydride. ${ }^{17}$ Dieckmann cyclisation under aprotic conditions (KOBu^{t}-dry toluene) ${ }^{16}$ led to the desired 3 -keto-2-carboxylate 16, along with the corresponding 4 -carboxylate 19. By analogy with similar cyclisations leading to the corresponding keto-prolines, these are the kinetic and thermodynamic products respectively. ${ }^{18}$ Yields of the former were best when the reaction was worked up after only

10

11

12
ten minutes and, fortunately, the two isomers were easily separated by column chromatography. The 4-keto-3-carboxylate $\mathbf{1 7}$ was obtained from the commercially available amine hydrochloride by reaction with Boc anhydride and triethylamine in dichloromethane. At the outset of the project, the alternatively esterified 4-carboxylate $\mathbf{1 8}$ was also commercially available and was used for some preliminary studies; however, subsequently, supplies were unavailable and we therefore had to prepare additional material using the Dieckmann method: esterification of the diacid 15a using acidic ethanol provided the diethyl ester 15d and thence the N-methoxycarbonyl derivative 15e, after acylation by methyl chloroformate. Dieckmann cyclisation for a longer period delivered a slightly better yield of the 4-carboxylate 18 , relative to the foregoing preparation of keto ester 19. Each β-keto ester existed very largely in its enol form in deuteriochloroform.

The yeast reductions were performed using the established method detailed by the Seebach group using commercial, dried bakers' yeast available from a local supermarket and sucrose. ${ }^{19}$ As previously observed, ${ }^{7}$ it was important to use tap rather than distilled water; presumably, trace elements present in the former aid the growth and metabolism of the yeast. If distilled water was used, the reductions tended to stop after around $50-60 \%$ conversion. We also found that it was advisable to use dried yeast from a 'high turnover' store, as older samples ($>c a$. two months), even when kept in unopened packets, also gave lower yields. Under optimum conditions, reduction of the 3-keto-2carboxylate 16 routinely gave ca. 80% isolated yields of the hydroxy ester $\mathbf{2 0}$ which was isolated simply by filtration and extraction with dichloromethane, even though the filtration process had to be carried out twice and was rather slow. The samples were remarkably clean according to NMR analysis, which was fortunate as compound $\mathbf{2 0}$ proved to be somewhat unstable to chromatography. However, NMR analysis was complicated by the presence of rotamers; this proved to be a continuing problem throughout this project. Although some useful ${ }^{1} \mathrm{H}$ data could be obtained by heating the latter samples, ${ }^{13} \mathrm{C}$ spectra, obtained in d_{6} - DMSO at 350 K , proved more useful

14

15a) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}(\mathrm{HCl})$;
b) $R^{1}=H ; R^{2}=\mathrm{Me}(\mathrm{HCl}) ;$
c) $\mathrm{R}^{1}=\mathrm{Boc} ; \mathrm{R}^{2}=\mathrm{Me}$;
d) $\mathrm{R}^{7}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{Et}(\mathrm{HCl})$;
e) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}^{2}=\mathrm{Et}$

18

22

23a) $R^{1}=R^{2}=H$;
b) $\mathrm{R}^{1}=\mathrm{SiBu}^{\mathrm{t}} \mathrm{Ph}_{2} ; \mathrm{R}^{2}=\mathrm{H}$;
c) $\mathrm{R}^{1}=\mathrm{SiBu}^{\mathbf{1}} \mathrm{Ph}_{2} ; \mathrm{R}^{2}=\mathrm{C}(\mathrm{S}) \mathrm{Im}$

25a) $\mathrm{R}^{1}=\mathrm{Boc} ; \mathrm{R}^{2}=\mathrm{SiBu}^{\mathrm{t}} \mathrm{Ph}_{2}$;
b) $\mathrm{R}^{1}=\mathrm{Ts} ; \mathrm{R}^{2}=\mathrm{SiBu} \mathrm{t}^{\mathrm{t}} \mathrm{h}_{2}$;
c) $R^{1}=\mathrm{Ts} ; \mathrm{A}^{2}=\mathrm{H}$.
and gave convincing evidence of chemical and stereochemical purity. The hydroxy ester $\mathbf{2 0}$ produced from keto ester $\mathbf{1 6}$ was a single diastereoisomer according to ${ }^{13} \mathrm{C}$ data and showed $[\alpha]_{\mathrm{D}}^{23}$ $+47.9\left(c, 3.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. We were able to measure $J_{2,3}$ by observing 2-H only; a value of 6.4 Hz seemed to rule out a diaxial relationship between $2-\mathrm{H}$ and $3-\mathrm{H}$ but this did not help significantly in determining the relative configuration of the ester and hydroxy groups. It has been established that 2 -substituents in N -alkoxycarbonyl piperidines are usually positioned axially, rather than the more expected equatorial placement, in order to avoid unfavourable steric interaction with the N-substituent. ${ }^{20}$ If this were the case, then both the trans- and cis-isomers 21 could give such a value; the value of 6.4 Hz only ruled out the trans-isomer, in which the 2-carboxylate was positioned equatorially, which was not expected. Unfortunately, we were unable to observe $3-\mathrm{H}$ as an isolated resonance, either in the initial product or in the corresponding acetate. We therefore sought to partly establish the absolute stereochemistry of the reduction product 20 by degradation to the known bis-tosylate 22, derived from $(R)-(+)$ piperidine-2-methanol. ${ }^{21}$ The latter was reported to show $[\alpha]_{\mathrm{D}}^{18}+56.6(c, 1.03, \mathrm{EtOH})$ and so appeared suitable for comparison purposes; we hoped to resolve the relative stereochemistry problem along the way.

The initial yeast reduction product 20 was smoothly reduced to the diol 23a by lithium aluminium hydride in tetrahydrofuran; subsequent selective protection of the primary alcohol group provided a good overall yield of the monosilyl derivative 23b. Barton-McCombie deoxygenation by conversion to the thiocarbamate 23c followed by reduction using tributyltin hydride ${ }^{22}$ gave a reasonable isolated yield of the piperidine-2methanol derivative 25a. A bonus in this sequence was the appearance in the ${ }^{1} \mathrm{H}$ NMR spectrum of the thiocarbamate 23c of an essentially first-order resonance for $3-\mathrm{H}$ at $\delta_{\mathrm{H}} 5.53$ as a ddd pattern with $J 12.0,6.0$ and 5.6 Hz . This provided clear evidence for the cis-stereochemistry in conformation 24 (or its enantiomer). On the assumption ${ }^{20}$ that the 2 -substituent is positioned axially, then one large coupling constant suggests that $3-\mathrm{H}$ must be axial (i.e. $J_{3,4}=12.0 \mathrm{~Hz}$), with the remaining two being smaller ax-eq couplings. Were this the trans-isomer, then 3-H should display either no large coupling constants (both groups axial ${ }^{20}$) or two large trans-diaxial values, if both substituents were positioned equatorially. Similarly, no large J values would be expected in the $3-\mathrm{H}$ resonance of the cisisomer, if the 2-substituent were positioned equatorially as this would also place $3-\mathrm{H}$ in an equatorial position. Completion of the sequence involved selective removal of the N-Boc group using trifluoroacetic acid and tosylation of the resulting free amine gave the monotosylate $\mathbf{2 5 b}$, which was then desilylated to give the alcohol 25c. Finally, this was tosylated to give the bistosylate 22 which displayed $[a]_{\mathrm{D}}^{23}+55.0(c, 0.8, \mathrm{EtOH})$, indicating the (R)-absolute stereochemistry shown ${ }^{21}$ and also an enantiomeric enrichment of 97%. Hence, we concluded that the initial yeast reduction product $\mathbf{2 0}$ had the $(2 R, 3 S)$ absolute configuration shown. As a check on the level of optical purity in the sample of the bis-tosylate $\mathbf{2 2}$, we prepared a sample of the racemic material and examined its ${ }^{1} \mathrm{H}$ NMR spectra in the presence of increasing amounts of the chiral shift reagent tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium(III). We observed almost baseline separation of two broadened signals due to the resonances of a pair of protons on one of the tosyl aromatic rings. When a similar experiment was repeated with the yeast reduction product, only one line was observed. However, the lack of complete separation and line broadening precluded any firm conclusion beyond that the sample was of at least 90% enantiomeric enrichment.

Interest in the synthesis of the various isomers of 3-hydroxypiperidine-2-carboxylic acid (3β-hydroxypipecolic acid) has increased recently, due both to its occurrence in some natural products as well as its potential for the elaboration of modified peptides and related structures. A separable mixture
of both the cis- and trans-isomers, as single enantiomers, was originally prepared by the Rapoport group ${ }^{23}$ and more recently by enecarbamate epoxidation, methanolysis and displacement with cyanide. ${ }^{24}$ Various selective routes to the trans-isomer have also been reported, ${ }^{25}$ together with two approaches to the cisisomer. ${ }^{26}$ Very recently, the Williams group ${ }^{27}$ have reported an application of their asymmetric method for amino acid synthesis to the preparation of both the $(2 R, 3 R)$ and $(2 S, 3 S)$ (trans) isomers of this hydroxy acid, with a view to determining the absolute stereochemistry of such a residue which occurs in the natural antitumor antibiotic Tetrazomine. These were not identical to the natural material and neither was the $(2 R, 3 S)$ isomer, prepared using the foregoing yeast reduction method, although comparative NMR data showed these to have the same cis-geometry. Further, the optical rotations of these samples $\left\{[a]_{\mathrm{D}}^{20}-72.3(c, 0.10,1 \mathrm{M} \mathrm{HCl})\right.$ for the natural amino acid; $[a]_{\mathrm{D}}^{20}+82.1(c, 0.12,1 \mathrm{M} \mathrm{HCl})$ for amino acid obtained by hydrolysis of yeast reduction product $\mathbf{2 0}$ \}, were essentially equal but opposite in sign. Hence, the 3-hydroxypiperidine-2carboxylic acid residue in the natural product has the $(2 S, 3 R)$ configuration, the only one which has yet to be synthesized selectively.

We next examined yeast reduction of the 4-keto-3-carboxylate 17 and were pleased to find that a hydroxy ester was

Scheme 4
produced in 74% yield as a crystalline solid, mp $58-60^{\circ} \mathrm{C}$, which showed $[a]_{\mathrm{D}}^{23}+25.6\left(c, 3.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Once again, a simple solvent extraction provided remarkably clean material which, according to ${ }^{13} \mathrm{C}$ NMR analysis, was a single diastereoisomer. In this case, the relative stereochemistry was deduced to be cis (i.e. $\mathbf{2 6}$ or its enantiomer) from ${ }^{1} \mathrm{H}$ NMR data, although rotameric broadening again necessitated running these spectra at above ambient temperature. The spectrum was fully assigned on the basis of COSY data. On the assumption that the larger ester group would occupy an equatorial position, $3-\mathrm{H}$ was clearly in an axial position whereas 4-H was equatorial (see data associated with conformation 27). All other coupling constant data were consistent with this assignment and argued against any of the other three possibilities (i.e. cis with an axial ester group or trans with both substituents equatorial or both axial). As a further check, we also prepared the corresponding acetate 28; in its ${ }^{1} \mathrm{H}$ NMR spectrum, the $4-\mathrm{H}$ was now shifted downfield and appeared as an apparent quartet with $J=3.2 \mathrm{~Hz}$, again confirming that the 4 -substituent was in an axial position. ${ }^{28} \mathrm{We}$ determined the absolute stereochemistry of the initial reduction product 26 in a similar fashion to that of the foregoing 3-hydroxy-2-carboxylate 20, relying on a literature optical rotation value of +54 for the bis-tosylate 29 derived from (R) -piperidine-3-methanol. ${ }^{29}$ Thus, the initial product 26 was reduced using lithium aluminium hydride and the resulting diol 30a selectively protected as the monosilyl ether 30b. Similar yields in the initial reduction step were also obtained using a combination of diisobutylaluminium hydride (DIBAL-H) and boron trifluoride-diethyl ether in THF at $-78{ }^{\circ} \mathrm{C} .{ }^{30}$ Removal of the remaining free hydroxy group was effected by a recent modification ${ }^{31}$ of the Barton-McCombie method, by conversion into the pentafluorophenyl thiocarbonate $\mathbf{3 0 c}$ followed by tin hydride reduction, which gave a reasonable overall yield

of the piperidine-3-methanol derivative 31a. Subsequent replacement of the Boc group by p-tolylsulfonyl gave the tosyl derivative 31b which was then desilylated and the resulting alcohol 31c tosylated to give the bis-tosylate 31d. This proved to have a similar melting point to that recorded for the (R) enantiomer ${ }^{29}$ and an almost equal (-50.2) but opposite optical rotation in the same solvent. Hence, we assigned the (S) stereochemistry to this final product 31d and hence the $(3 R, 4 S)$ stereochemistry 26 to the initial yeast reduction product from keto ester 19. The optical rotation values suggest an enantiomeric enrichment of 93%. Chiral shift reagent NMR experiments, using the same europium reagent as described for the foregoing 3-hydroxy-2-carboxylate, confirmed this as a minimum value.

Our final series of experiments were conducted on the 3-ketopiperidine-4-carboxylates 18 and 19. Once again, yeast reduction of the N-methoxycarbonyl derivative $\mathbf{1 8}$ led to an excellent isolated yield of a single diastereoisomer (according to ${ }^{13} \mathrm{C}$ NMR data) of a hydroxy ester, which was isolated in a clean state after simple solvent extraction and which showed $[\alpha]_{\mathrm{D}}^{21}$ $-21.4\left(c, 1.1, \mathrm{CHCl}_{3}\right)$. Assuming that the ester group would be positioned equatorially in a reasonably well-behaved chair-like conformation, we were able to assign the cis-stereochemistry 32 to this product on the basis of coupling constant data. Although the resonance for the $3-\mathrm{H}$ was masked, it was evident that $4-\mathrm{H}$ was axial and that this and $2-\mathrm{H}_{\mathrm{ax}}$ were both adjacent to an equatorial proton, consistent with conformation 33. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the corresponding acetate 34 , the $3-\mathrm{H}$ was now visible as a narrow multiplet, again only consistent with an equatorial positioning; all other data indicated a cisgeometry. ${ }^{28}$ This was further indicated by a facile preparation of the homologue $\mathbf{3 6}$ of the Geissman-Waiss lactone 6. Thus,
reduction of the initial hydroxy ester using methanolic sodium borohydride gave the diol 35a which was tosylated at the primary alcohol position and the resulting tosylate 35b treated with sodium cyanide in dimethyl sulfoxide to give the nitrile 35c in good yield. Acid hydrolysis at ambient temperature led to an excellent yield of the lactone 36 which could find use in the elaboration of further homologues. The robust nature of the N-protecting group in the initial reduction product 32, in contrast to the corresponding N-Boc derivatives, also allowed us to determine its optical purity using chiral GC. Firstly, a sample of the keto ester $\mathbf{1 8}$ was reduced using sodium borohydride in methanol $\left(0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}\right)$ to give a racemic mixture of the cis $(c f$. 32) and trans hydroxy esters, in a ratio of $c a .4: 1$, according to ${ }^{1} \mathrm{H}$ NMR integration. This mixture was separated into four well-resolved peaks using a $25 \mathrm{~m} \times 0.33 \mathrm{~mm}$ Chirval column, operating under a temperature programme of $150^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ at $1.0^{\circ} \mathrm{C}$ per minute. The minor trans-isomers were eluted first ($R_{\mathrm{t}} 14.3$ and 14.5 min), followed by the cis-isomers at $R_{\mathrm{t}} 15.2$ and 15.5 min . The ratio of diastereoisomers was $24: 76$ trans: cis. Under identical conditions, the yeast reduction product $\mathbf{3 2}$ showed only two peaks ($R_{\mathrm{t}} 15.2$ and 15.5 min) in a ratio of $89: 11$, indicating an enantiomeric excess of 78%.

However, the foregoing measurements and the preparation of lactone 36 did not allow us to assign the absolute stereochemistry to the major enantiomer of the yeast reduction product 32. This was determined in a more constructive way than in the foregoing cases by homologation of the initial reduction product into a quinuclidine ring system. ${ }^{32}$ Starting with the related N-Boc keto ester 19, yeast reduction provided an excellent yield of pure hydroxy ester 37, again as a single diastereoisomer which showed $[\alpha]_{\mathrm{D}}^{21}-32.7\left(c, 1.0, \mathrm{CHCl}_{3}\right)$. The cis-stereochemistry was assigned on the basis of closely similar coupling constant data to those displayed by the hydroxy ester 32. The secondary alcohol function was protected as the methoxymethoxy (MOM) ether and the resulting derivative 38a saponified to give the acid $\mathbf{3 8 b}$. Conversion into the corresponding acid chloride and treatment with diazomethane provided the diazo ketone 38c which underwent Wolff rearrangement to give the homologated ester 39. Dibal-H reduction led to the alcohol 40a which was converted into the mesylate 40 b . Removal of the Boc protecting group using trifluoroacetic acid and cyclisation of the resulting material in hot ethanol ${ }^{32}$ gave the polar quinuclidine 41a which was deprotected to give 3-quinuclidinol 41b, which showed spectral data identical to an authentic sample (Aldrich) of the racemate. The sample also showed $[\alpha]_{\mathrm{D}}^{25}-39.5(c, 0.5,1 \mathrm{M} \mathrm{HCl})$, indicating the (R) configuration shown and hence the $(3 R, 4 R)$ stereochemistry as shown for the initial yeast reduction products 17 and 18 . Comparisons with authentic samples and literature rotation data

32

$33 \mathrm{JH}_{4 \mathrm{ax}}=11.9,4.0$ and 2.4 Hz ; $J H_{5 a x}=13.5,11.9,11.9$ and 4.4 Hz ; $J \mathrm{H}_{2 \mathrm{ax}}=13.0(\mathrm{brd}) \mathrm{Hz}$

35a) $\mathrm{R}=\mathrm{OH}$; b) $\mathrm{R}=\mathrm{OTs}$ c) $\mathrm{R}=\mathrm{CN}$

36
Scheme 5

suggested an enantiomeric enrichment of 94%, although this is likely to be an upper limit for the initial reduction product 37 , in view of the chiral GC results for the N-methoxycarbonyl derivative 32. Some enrichment could well have occurred during one or more of the chromatographic separations leading to the quinuclidinol 41b.
Two groups ${ }^{35,36}$ have reported modifications to our original method which gave the hydroxy proline 5 with 78% enantiomeric enrichment, by using an alternative Dipodacus yeast species, ${ }^{35}$ or using bakers' yeast immobilized on calcium alginate. ${ }^{36}$ In the present work, we briefly examined the latter method using keto esters 17 and 19 but chemical yields were very similar and, according to optical rotation data, this did not improve the enantiomeric excess of the products (26 and 37). However, the work-ups were significantly easier as the yeast residues were much more readily removed by filtration when immobilized.
In conclusion, these examples of yeast reductions have provided some potentially useful intermediates for piperidine synthesis with good optical purities. The absolute stereochemistries of the initial hydroxy esters 20, 26, 32 and $\mathbf{3 7}$ fall into the same pattern as previously found for yeast reductions of 'cyclic' β keto esters. ${ }^{4-7}$ This is that if the keto esters $\mathbf{4 2}$ are drawn with the ester group to the right, these will be reduced to give exclusively the cis-hydroxy ester diastereoisomers 43, in which the major enantiomer has the two functional groups pointing downwards to the α-face.

Experimental

General details

Melting points were determined on a Köfler hot stage apparatus and are uncorrected. Optical rotations were measured using an Optical Activity AA-10 polarimeter. Infrared spectra were recorded using a Perkin-Elmer 1600 series Fourier transform spectrometer using thin films between sodium chloride plates, unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR spectra were determined using a Perkin-Elmer R32 operating at 90 MHz , a Bruker WM-250, a JEOL EX-270 or a Bruker AM-400 spectrometer, operating at the frequencies indicated [i.e. (90) refers to 90 MHz etc.]. ${ }^{13} \mathrm{C}$ NMR spectra were determined using any of the latter three instruments, operating at 62.5, 67.8 and 100.1 MHz respectively, as indicted after δ_{C}. Unless otherwise stated, all spectra were determined using dilute solutions in deuteriochloroform and tetramethylsilane as internal standard.
J Values are expressed in Hertz. Mass spectra were measured using either an AEI MS902 or a VG 7070E instrument, both operating in the electron impact mode, unless otherwise stated; FAB spectra were obtained using the latter instrument or were obtained from the EPSRC Mass Spectrometry Service, Swansea University.

Unless otherwise stated, all reactions were carried out in anhydrous solvents which were obtained by the usual methods. ${ }^{37}$ All organic solutions from work-ups were dried by brief exposure to anhydrous magnesium sulfate followed by filtration. Solvents were removed by rotary evaporation. CC refers to column chromatography over Sorbsil silica gel using the eluents specified.

N-Ethoxycarbonylmethylpyrrolidin-2-one 14

Pyrrolidin-2-one ($85 \mathrm{~g}, 1 \mathrm{~mol}$) was added dropwise to a rapidly stirred suspension of molten sodium ($23 \mathrm{~g}, 1 \mathrm{~mol}$) in refluxing toluene (600 ml). After a further hour at reflux, ethyl bromoacetate ($167 \mathrm{~g}, 1 \mathrm{~mol}$) was added dropwise during 20 min and heating continued for an additional hour. The mixture was then cooled, filtered and the solvents evaporated. Distillation of the residue gave the pyrrolidine $14(142 \mathrm{~g}, 83 \%)$, bp $127^{\circ} \mathrm{C}$ at 0.1 mmHg (lit. ${ }^{38} \mathrm{bp} 108-113^{\circ} \mathrm{C}$ at $1-2 \mathrm{mmHg}$) as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1740 ; \delta_{\mathrm{H}}(270) 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right), 2.02-2.12(2 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{CH}_{2}\right), 2.39\left(2 \mathrm{H}, \mathrm{t}, J 8.0,3-\mathrm{CH}_{2}\right), 3.50(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J c a .7 .0$, $\left.5-\mathrm{CH}_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CO}\right)$ and $4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{OCH}_{2}\right)$; $\delta_{\mathrm{C}}(68.5) 13.5\left(\mathrm{CH}_{3}\right), 17.3,29.7,43.4,47.0,60.5\left({ }_{\left(\text {all } \mathrm{CH}_{2}\right)}\right), 168.0$ and 174.9 (both CO); m/z $171\left(\mathrm{M}^{+}, 20 \%\right)$, 98 (100), 84 (19) and 70 (26) (Found: $\mathrm{M}^{+}, 171.0900 . \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires M, 171.0895).

Dimethyl N-(tert-butoxycarbonyl)-3-azaheptane-1,7-dioate 15c

A solution of pyrrolidinone $\mathbf{1 4}(120 \mathrm{~g})$ in aqueous 6 M hydrochloric acid (800 ml) was refluxed for 48 h then cooled and evaporated. The residue was dissolved in methanol $(400 \mathrm{ml})$ and the solution again evaporated. Repetition of this process gave 3-azaheptane-1,7-dioic acid hydrochloride $\mathbf{1 5 a}(126 \mathrm{~g}, 91 \%)$ as a colourless gum, $\delta_{\mathrm{H}}\left(400 ; \mathrm{D}_{2} \mathrm{O}\right) 1.58-1.72\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.21$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.2,6-\mathrm{CH}_{2}\right), 2.86\left(2 \mathrm{H}\right.$, apparent $\left.\mathrm{t}, J 7.8,4-\mathrm{CH}_{2}\right)$ and $3.67\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 ; \mathrm{D}_{2} \mathrm{O}\right) 23.1,33.0,49.2,49.8$ (all CH_{2}), 171.2 and 179.1 (both CO).
Acetyl chloride (50 ml) was added to methanol $(500 \mathrm{ml})$ and the solution stirred for 15 min then added to the foregoing diacid 15a (88 g). The resulting solution was refluxed for 5 h then cooled and evaporated to leave dimethyl 3-azaheptane-1,7dioate hydrochloride 15b ($94.3 \mathrm{~g}, 94 \%$) as a colourless oil, $v_{\max } / \mathrm{cm}^{-1} 3360,1741$ and 1728; $\delta_{\mathrm{H}}\left(400 ; \mathrm{CD}_{3} \mathrm{OD}\right) 2.01-2.16$ $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.57\left(2 \mathrm{H}, \mathrm{t}, J 7.3,6-\mathrm{CH}_{2}\right), 3.15-3.25(2 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{CH}_{2}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10(2 \mathrm{H}, \mathrm{s}$, $\left.2-\mathrm{CH}_{2}\right)$ and $5.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 189\left(\mathrm{M}^{+}-\mathrm{HCl}, 3 \%\right), 130$ (89), 98 (100), 70 (46) and 59 (17) (Found: $\mathrm{M}^{+}-\mathrm{HCl}$, 189.0992. $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires $M, 189.1001$).

Di-tert-butyl dicarbonate ($32 \mathrm{~g}, 146 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{ml})$ was added dropwise to a solution of the foregoing diester hydrochloride $\mathbf{1 5 b}(30 \mathrm{~g}, 113 \mathrm{mmol})$ and triethylamine $(14.8 \mathrm{~g}, 146 \mathrm{mmol})$ in dry dichloromethane $(200 \mathrm{ml})$ at ambient temperature. The resulting solution was stirred overnight then diluted with dichloromethane (200 ml) and washed with 2 M aqueous citric acid $(2 \times 30 \mathrm{ml})$ and brine $(30 \mathrm{ml})$ then dried and filtered through a bed of silica gel. Evaporation of the filtrate left the N-Boc diester $\mathbf{1 5 c}(32.7 \mathrm{~g}, 85 \%)$ as a colourless oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1738,1725$ and $1668 ; \delta_{\mathrm{H}}(400) 1.23\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.55-$ $1.68\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.15\left(2 \mathrm{H}, \mathrm{t}, J 7.3,6-\mathrm{CH}_{2}\right), 3.13(2 \mathrm{H}, \mathrm{t}$, $\left.J 6.8,4-\mathrm{CH}_{2}\right), 3.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and 3.70 $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100) 23.4\left(\mathrm{CH}_{2}\right), 27.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.8$, 39.9, $47.5\left(\right.$ all $\left.\mathrm{CH}_{2}\right), 50.9,51.3$ (both CH_{3}), $79.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right] \text {, }}\right.$ 155.7, 170.0 and 173.0 (all CO); $m / z 188\left(\mathrm{M}^{+}-\mathrm{Boc}, 14 \%\right), 158$ (8), 157 (8), 101 (16), 70 (15), 59 (15) and 57 (100) (Found: $\mathrm{M}^{+}-\mathrm{Boc}, 188.0884 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{4}$ requires $M, 188.0923$) (Found:

C, 54.3; H, 8.1; N, 4.8. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{6}$ requires C, 54.0; H, 8.0; N, 4.8\%).

1-tert-Butyl 2-methyl 3-oxopiperidine-1,2-dicarboxylate 16 and 1-tert-butyl 4-methyl 3-oxopiperidine-1,4-dicarboxylate 19

Potassium tert-butoxide ($9.7 \mathrm{~g}, 87 \mathrm{mmol}$) was added in portions during 10 min to an ice-cooled, stirred solution of the Boc diester $15 \mathrm{c}(25 \mathrm{~g}, 87 \mathrm{mmol})$ in dry toluene (200 ml). After a further 10 min , the mixture was acidified to pH 3 using 2 M aqueous citric acid and the organic layer separated. The aqueous phase was extracted with dichloromethane (3×100 $\mathrm{ml})$. The combined organic solutions were washed with brine $(50 \mathrm{ml})$ then dried and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(9: 1)\right]$ of the residue gave (i) the 3-oxo-4-carboxylate 19 ($10.4 \mathrm{~g}, 47 \%$) as a colourless oil, $R_{\mathrm{F}} 0.9 ; v_{\text {max }} / \mathrm{cm}^{-1} 3361,1690$ and $1662 ; \delta_{\mathrm{H}}$ (270) $1.47\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.32-2.40\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 3.49(2 \mathrm{H}$, apparent $\left.\mathrm{t}, J 6.0,6-\mathrm{CH}_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03(2 \mathrm{H}, \mathrm{s}$, $\left.2-\mathrm{CH}_{2}\right)$ and $12.00(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}(68.5) 21.9$ and $23.8\left(\mathrm{CH}_{2}\right)$, 28.0 and $28.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.9$ and $41.2\left(\mathrm{CH}_{2}\right), 45.0$ and 45.5 $\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{3}\right), 79.4$ and $80.3\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 96.6 \text { and } 98.5(\mathrm{C}) \text {, }}\right.$ 154.0 and $154.4\left(\mathrm{CO}_{2} \mathrm{Bu}^{t}\right), 167.0(\mathrm{C})$ and $173.0(\mathrm{CO}) ; \mathrm{m} / \mathrm{z} 156$ (M^{+}- Boc, 6\%), 125 (13), 97 (8), 59 (10) and 57 (100) (Found: $\mathrm{M}^{+}-\mathrm{Boc}, 156.0634 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{3}$ requires $M, 156.0661$) (Found: C, 56.2; H, 7.8; N, 5.4. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires C, $56.0 ; \mathrm{H}, 7.5 ; \mathrm{N}$, 5.5%) and (ii) the 3-oxo-2-carboxylate $16(6.0 \mathrm{~g}, 27 \%)$ as a colourless oil, $R_{\mathrm{f}} 0.8 ; v_{\text {max }} / \mathrm{cm}^{-1} 3407,1740$ and 1698; $\delta_{\mathrm{H}}(270)$ $1.44\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}\right), 1.49\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Bu}^{t}\right), 1.81-1.95(0.7 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{CH}_{2}\right), 1.95-2.08\left(1.3 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.41(0.7 \mathrm{H}, \mathrm{t}, J 7.2$, $\left.4-\mathrm{CH}_{2}\right), 2.42-2.60\left(1.3 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2}\right), 3.28-3.45(1 \mathrm{H}, \mathrm{m}), 3.79$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86-4.10(1 \mathrm{H}, \mathrm{m}), 5.06$ and $5.22[$ total 1 H , both $\mathrm{br} \mathrm{s}, 2-\mathrm{H}$ (keto)] and $11.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}(68.5) 22.3,22.8$, $26.5\left(\right.$ all $\left.\mathrm{CH}_{2}\right)$, $27.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.8,40.4,41.5\left(\right.$ all $\left.\mathrm{CH}_{2}\right), 53.1$ $\left(\mathrm{CH}_{3}\right), 65.6$ and 66.9 (both 2-CH), 80.5 and 81.2 [both $C\left(\mathrm{CH}_{3}\right)_{3}$], 107.9, 154.2, 154.8, 155.0, 167.4, 169.4, 199.9 and 200.0 (all C); $m / z 257$ ($\mathrm{M}^{+}, 2 \%$), 156 (10), 125 (18), 59 (11) and 57 (100) (Found: M^{+}, 257.1235. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires M, 257.1263) (Found: C, 56.1; H, 7.6; N, 5.4\%).

1-tert-Butyl 3-ethyl 4-oxopiperidine-1,3-dicarboxylate 17

Di-tert-butyl dicarbonate ($5.8 \mathrm{~g}, 26.5 \mathrm{mmol}$) in dichloromethane (10 ml) was added dropwise to a stirred solution of ethyl 4-oxopiperidine-3-carboxylate hydrochloride (5.0 g , 24.1 mmol ; Fluka) and triethylamine ($2.68 \mathrm{~g}, 26.5 \mathrm{mmol}$) in dichloromethane $(100 \mathrm{ml})$. The mixture was stirred overnight at ambient temperature then diluted with dichloromethane (200 $\mathrm{ml})$. The resulting suspension was washed with 2 M hydrochloric acid $(2 \times 30 \mathrm{ml})$ and brine $(30 \mathrm{ml})$ then dried and filtered through a pad of silica gel. Evaporation of the filtrates left the 4-oxopiperidine-3-carboxylate 17 ($5.1 \mathrm{~g}, 78 \%$) which crystallized from hexane as a colourless solid, $\mathrm{mp} 62^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr})$ 3424,1691 and $1626 ; \delta_{\mathrm{H}}(400 ; 333 \mathrm{~K}) 1.31(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.48\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.37(2 \mathrm{H}$, apparent br t, J ca. $\left.5.8,5-\mathrm{CH}_{2}\right), 3.57\left(2 \mathrm{H}, \mathrm{t}, J 5.9,6-\mathrm{CH}_{2}\right), 4.03-4.10(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.2-\mathrm{CH}_{2}\right), 4.24\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right)$ and $12.07(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{C}}(68.5) 13.66\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 27.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.5,38.9$ (very br), 39.8 (br) (all $\left.\mathrm{CH}_{2}\right), 60.1\left(\mathrm{OCH}_{2}\right), 79.6\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 95.5 \text { (sl. br), }}\right.$ 154.1, $169.5(\mathrm{br})$ and 169.9 (all C); $m / z 214\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 40 \%\right)$, 198 (9), 170 (10), 142 (12), 98 (28) and 57 (100) (Found: $\mathrm{M}^{+}-\mathrm{Bu}^{t}$, 214.0707. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{5}$ requires $M, 214.0715$) (Found: $\mathrm{C}, 57.5 ; \mathrm{H}, 8.0 ; \mathrm{N}, 4.9 . \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires C, 57.5; H, 7.8; N, 5.2\%).

Diethyl N-(methoxycarbonyl)-3-azaheptane-1,7-dioate 15e

Esterification of the diacid $\mathbf{1 5 a}$ (105 g) using ethanol (500 ml) in place of methanol, but otherwise the same conditions, gave diethyl 3-azaheptane-1,7-dioate hydrochloride $\mathbf{1 5 d}$ ($113 \mathrm{~g}, 84 \%$) as a colourless oil, $v_{\max } / \mathrm{cm}^{-1} 3290,1738$ and 1735; $\delta_{\mathrm{H}}(400 ;$ $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 2.03-$ $2.16\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7.0,6-\mathrm{CH}_{2}\right), 3.22(2 \mathrm{H}, \mathrm{t}$,
$\left.J 6.5,4-\mathrm{CH}_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.16\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right)$ and $4.32\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 ; \mathrm{CD}_{3} \mathrm{OD}\right) 14.4,14.5$ (both CH_{3}), 22.3, 27.0, 31.9, 48.8 (all CH_{2}), 61.7, 63.5 (both OCH_{2}), 167.5 and 174.0 (both CO); $m / z 217\left(\mathrm{M}^{+}-\mathrm{HCl}, 3 \%\right)$, 144 (100), 115 (14), 99 (22) and 84 (18).

Methyl chloroformate ($8.2 \mathrm{~g}, 87 \mathrm{mmol}$) was added dropwise to a stirred solution of the foregoing diester hydrochloride 15d ($20 \mathrm{~g}, 78 \mathrm{mmol}$) and triethylamine ($8.8 \mathrm{~g}, 87 \mathrm{mmol}$) in dry dichloromethane (200 ml), cooled in an ice bath. No additional coolant was added and the mixture was stirred overnight then diluted with dichloromethane (200 ml). The resulting suspension was washed with 2 M hydrochloric acid $(2 \times 30 \mathrm{ml})$ and brine $(40 \mathrm{ml})$, then dried and filtered through a pad of silica gel. Evaporation of the filtrate gave the protected diester 15e (15.2 $\mathrm{g}, 70 \%$) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 1736,1732$ and 1670 ; $\delta_{\mathrm{H}}(400) 1.07\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right), 1.55-$ $1.75\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.08-2.28\left(2 \mathrm{H}, \mathrm{t}, J 7.0,6-\mathrm{CH}_{2}\right), 3.16$ and 3.19 (total 2 H , both $\mathrm{t}, J 7.0,4-\mathrm{CH}_{2}$ rotamers), 3.46 and 3.51 (total 3 H , both s, OCH_{3} rotamers), 3.75 and 3.80 (total 2 H , both s, $2-\mathrm{CH}_{2}$ rotamers), $3.93\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right)$ and 3.95 ($2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}$); $\delta_{\mathrm{C}}(100)$ 13.1, 13.2 (both CH_{3}), 22.3 and $22.6\left(5-\mathrm{CH}_{2}\right), 30.1$ and $30.2\left(6-\mathrm{CH}_{2}\right), 46.4$ and $46.6\left(4-\mathrm{CH}_{2}\right)$, 47.9 and $48.1\left(2-\mathrm{CH}_{2}\right), 51.6$ and $51.7\left(\mathrm{OCH}_{3}\right), 59.1$ and 59.4 $\left(\mathrm{OCH}_{2}\right), 59.9$ and $60.0\left(\mathrm{OCH}_{2}\right), 155.6$ and $155.9\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 167.7 and $168.7(\mathrm{CO})$ and $171.9(\mathrm{CO}) ; \mathrm{m} / \mathrm{z} 275\left(\mathrm{M}^{+}, 9 \%\right), 230$ (29), 216 (18), 188 (18), 128 (24) and 70 (100) (Found: M^{+}, 275.1350. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{6}$ requires $M, 275.1369$).

4-Ethyl 1-methyl 3-oxopiperidine-1,4-dicarboxylate 18

Potassium tert-butoxide ($4.0 \mathrm{~g}, 36.4 \mathrm{mmol}$) was added in portions during 10 min to a stirred solution of the foregoing N -methoxycarbonyl diester $\mathbf{1 5 e}$ ($10.0 \mathrm{~g}, 36.4 \mathrm{mmol}$) in dry toluene (150 ml). After 1 h , the mixture was acidified to pH 1 using 2 M hydrochloric acid and the organic layer separated. The aqueous layer was extracted with dichloromethane ($3 \times 100 \mathrm{ml}$) and the combined organic solutions washed with brine (50 ml) then dried and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right.$ (9:1)] separated the 3-oxo-4-carboxylate $\mathbf{1 8}(4.25 \mathrm{~g}, 51 \%)$ as a colourless oil, bp $170^{\circ} \mathrm{C}$ (oven temperature) at $50 \mathrm{mmHg}, R_{\mathrm{f}} 0.9 ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3350, 1701 and $1668 ; \delta_{\mathrm{H}}(400) 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.34$ $\left(2 \mathrm{H}\right.$, apparent br s, $\left.5-\mathrm{CH}_{2}\right), 3.54\left(2 \mathrm{H}\right.$, apparent br s, $\left.6-\mathrm{CH}_{2}\right)$, $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.06\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 4.23(2 \mathrm{H}, \mathrm{q}, J 7.0$, OCH_{2}) and $12.01(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}(100) 13.31\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 21.5$ (br), 40.2 (br), $44.1\left(\right.$ all $\left.\mathrm{CH}_{2}\right), 51.7\left(\mathrm{OCH}_{3}\right), 59.6\left(2-\mathrm{CH}_{2}\right), 95.9$ (C), $154.8\left(\mathrm{CO}_{2} \mathrm{Me}\right), 166.6(\mathrm{br}, \mathrm{C})$ and $170.9(\mathrm{C}) ; m / z 229\left(\mathrm{M}^{+}\right.$, $76 \%), 184$ (24), 168 (15), 156 (52), 140 (75), 59 (100) and 45 (54) (Found: $\mathrm{M}^{+}, 229.0952 . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires $M, 229.0950$).

(2R,3S)-1-(tert-Butyl) 2-methyl 3-hydroxypiperidine-1,2dicarboxylate 20

The 3-oxopiperidine-2-carboxylate $16(5.0 \mathrm{~g}, 19.5 \mathrm{mmol})$ was added to a fermenting, gently stirred suspension of dried bakers' yeast $(30 \mathrm{~g})$ and sucrose $(50 \mathrm{~g})$ in tap water $(500 \mathrm{ml})$, maintained at $30-32^{\circ} \mathrm{C}$. After 24 h , the mixture was suction filtered and the filtrate re-filtered through Kieselguhr then extracted with dichloromethane $(5 \times 200 \mathrm{ml})$. The combined extracts were washed with brine $(100 \mathrm{ml})$ then dried and evaporated to leave the 3-hydroxy-2-carboxylate $\mathbf{2 0}(4.0 \mathrm{~g}, 79 \%)$ as a pale yellow oil, $[a]_{\mathrm{D}}^{23}+47.9\left(c, 3.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1} 3437,1739$ and $1695 ; \delta_{\mathrm{H}}(400 ; 297 \mathrm{~K}) 1.41-1.59(1 \mathrm{H}, \mathrm{m}), 1.43[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.67-1.78(1 \mathrm{H}, \mathrm{m}), 1.91-2.00(2 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{\mathrm{ax}}\right), 3.70-3.82(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92(1 \mathrm{H}$, $\left.\mathrm{br} \mathrm{d}, J c a .13 .3,6-\mathrm{H}_{\mathrm{eq}}\right)$ and $4.54(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}) ; \delta_{\mathrm{H}}(400 ; 350 \mathrm{~K}$, d_{6}-DMSO) $1.38\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.38-1.70(4 \mathrm{H}, \mathrm{m}), 3.09(1 \mathrm{H}$, ddd, $J 12.8,3.0$ and $3.0,6-\mathrm{H}_{\text {eq }}$), $3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.65-3.80$ $(2 \mathrm{H}, \mathrm{m})$ and $4.67(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 6.4,2-\mathrm{H})$; $\delta_{\mathrm{C}}(100 ; 297 \mathrm{~K}) 23.4$ and $24.0\left(\mathrm{CH}_{2}\right), 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.1\left(\mathrm{CH}_{2}\right), 40.0$ and $41.4\left(\mathrm{CH}_{2}\right)$, $52.3\left(\mathrm{OCH}_{3}\right), 57.3$ and $58.9(\mathrm{CH}), 68.9(\mathrm{br}, \mathrm{CH}), 80.6\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right]}\right.$, 154.9 (br) and 172.4 (both CO); $\delta_{\mathrm{C}}\left(100 ; 350 \mathrm{~K}, \mathrm{~d}_{6}\right.$-DMSO) 22.3
$\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 28.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.0\left(\mathrm{br}, \mathrm{CH}_{2}\right), 51.0\left(\mathrm{OCH}_{3}\right)$, $58.9(\mathrm{CH}), 72.0(\mathrm{CH}), 79.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 154.5$ and 170.9 (both CO); $m / z 259$ (M ${ }^{+}, 2 \%$), 203 (18), 200 (11), 186 (5), 158 (18), 144 (90), 141 (14), 126 (17), 100 (98) and 57 (100) (Found: M^{+}, 259.1441. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires M, 259.1420) (Found: C, 55.9; $\mathrm{H}, 8.7 ; \mathrm{N}, 5.7 . \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires C, $55.6 ; \mathrm{H}, 8.2 ; \mathrm{N}, 5.4 \%$).

(2S,3S)-tert-Butyl 3-hydroxy-2-hydroxymethylpiperidine-1carboxylate 23a

A solution of the hydroxy ester $\mathbf{2 0}(2.0 \mathrm{~g}, 7.7 \mathrm{mmol})$ in tetrahydrofuran (5 ml) was added to a stirred, ice-cold suspension of lithium aluminium hydride ($1.17 \mathrm{~g}, 30.9 \mathrm{mmol}$) in tetrahydrofuran (50 ml). After $3 \mathrm{~h}, 2 \mathrm{M}$ aqueous sodium hydroxide (1.2 ml) was added and after 5 min stirring, the resulting mixture was filtered. The solid residue was washed with dichloromethane (200 ml) and the combined organic solutions washed with water $(20 \mathrm{ml})$ and brine $(20 \mathrm{ml})$ then dried and evaporated to leave the $\operatorname{diol} 23 \mathrm{a}(1.28 \mathrm{~g}, 72 \%)$ as a colourless oil, $[a]_{\mathrm{D}}^{22}+19.5$ $\left(c, 1.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1} 3425$ and $1678 ; \delta_{\mathrm{H}}(400 ; 300 \mathrm{~K}) 1.39$ [$9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 1.42-1.78 ($4 \mathrm{H}, \mathrm{m}$), 2.25-2.38 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times \mathrm{OH}), 2.81\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 13.5,6-\mathrm{H}_{\mathrm{ax}}\right), 3.68-3.72(1 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{\mathrm{eq}}\right), 3.70\left(1 \mathrm{H}, \mathrm{dd}, J 11.3\right.$ and $\left.6.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.87(1 \mathrm{H}, \mathrm{dt}$, $J 10.3$ and $4.9,3-\mathrm{H}), 4.03\left(1 \mathrm{H}\right.$, dd, $J 11.3$ and $\left.6.4, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right)$ and $4.25(1 \mathrm{H}, \mathrm{td}, J$ ca. 6.4 and $5.1,2-\mathrm{H}) ; \delta_{\mathrm{C}}(68.5) 23.7,28.3$ (both CH_{2}), $28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $39.7\left(\mathrm{br}, \mathrm{CH}_{2}\right), 56.0(\mathrm{CH}), 59.4$ $\left(\mathrm{CH}_{2}\right), 69.5(\mathrm{CH}), 80.3(\mathrm{C})$ and $155.7(\mathrm{CO}) ; \mathrm{m} / \mathrm{z} 158$ $\left(\mathrm{M}^{+}-\mathrm{OBu}^{+}, 12 \%\right)$ and 57 (100) (Found: $\mathrm{M}^{+}-57,158.0808$. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{3}$ requires $M, 158.0817$).

(2S,3S)-tert-Butyl 3-hydroxy-2-(tert-butyldiphenylsilyloxy-methyl)piperidine-1-carboxylate 23b

tert-Butyldiphenylsilyl chloride ($1.31 \mathrm{~g}, 4.76 \mathrm{mmol}$) was added to a solution of the piperidine diol $23 \mathrm{a}(1.0 \mathrm{~g}, 4.3 \mathrm{mmol})$, triethylamine ($0.48 \mathrm{~g}, 4.8 \mathrm{mmol}$) and 4 -(dimethylamino)pyridine (DMAP) $(26 \mathrm{mg})$ in dichloromethane $(100 \mathrm{ml})$. The resulting solution was stirred at ambient temperature overnight then diluted with dichloromethane (200 ml) and the solution washed with water $(50 \mathrm{ml})$ and brine $(50 \mathrm{ml})$ then dried and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(9: 1)\right]$ of the residue gave the silyl ether 23b $(1.59 \mathrm{~g}, 78 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.65 ;[a]_{\mathrm{D}}^{22}+42.8(c, 3.5$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3424$ and 1668; $\delta_{\mathrm{H}}(400 ; 300 \mathrm{~K}) 1.09[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.44\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.47-1.65(3 \mathrm{H}, \mathrm{m}), 1.88[1 \mathrm{H}$, br d, $\left.J 9.2,4-(5-)-\mathrm{H}_{\text {eq }}\right], 2.64\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 13.3,6-\mathrm{H}_{\mathrm{ax}}\right), 2.89(1 \mathrm{H}$, $\mathrm{brs}, \mathrm{OH}), 3.84-3.90\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{CH}_{\mathrm{A}}, 3-\mathrm{H}\right.$ and $\left.6-\mathrm{H}_{\mathrm{eq}}\right), 4.10(1 \mathrm{H}$, dd, $J 10.4$ and $\left.7.2,1^{\prime}-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right), 4.58(1 \mathrm{H}, \mathrm{td}, J c a .6 .3$ and $6.2,2-\mathrm{H})$ and $7.38-7.72(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}(100) 19.1(\mathrm{CSi})$, $24.0\left(\mathrm{CH}_{2}\right)$, $26.8\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.9,38.9(\mathrm{br}$, both $\left.\mathrm{CH}_{2}\right), 54.9(\mathrm{CH}), 60.7\left(\mathrm{CH}_{2}\right), 69.9(\mathrm{CH}), 79.1(\mathrm{C}), 127.9$, 129.9 (both CH), 132.6 and 132.8 (both C), 135.6 and 135.7 (both CH) and $154.9(\mathrm{CO}) ; m / z 396\left(\mathrm{M}^{+}-\mathrm{OBu}^{t}, 3 \%\right), 143(4)$, 100 (100) and 57 (45) (Found: $\mathrm{M}^{+}-57,396.1997 . \mathrm{C}_{23} \mathrm{H}_{30}{ }^{-}$ $\mathrm{NO}_{3} \mathrm{Si}$ requires $M, 396.1995$) (Found: C, 69.1; H, 8.6; N, 3.2. $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si}$ requires C, 69.0; H, 8.4; N, 3.0\%).

(2R)-tert-Butyl 2-(tert-butyldiphenylsilyloxymethyl)piperidine-1-carboxylate 25a

1, ${ }^{\prime}$-Thiocarbonyldiimidazole ($0.38 \mathrm{~g}, 2.1 \mathrm{mmol}$) was added to a stirred solution of the silyl ether 23b $(0.50 \mathrm{~g}, 1.1 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{ml})$ and the resulting solution refluxed for 24 h then cooled and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(9: 1)\right]$ of the residue separated the thiocarbamate $\mathbf{2 3 c}(0.57 \mathrm{~g}, 95 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.3 ; \delta_{\mathrm{H}}(270) 1.02\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.48[9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.62-2.05(4 \mathrm{H}, \mathrm{m}), 3.00\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 13.5,6-\mathrm{H}_{\mathrm{ax}}\right)$, $3.80-4.05\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{CH}_{2} \mathrm{OSi}\right.$ and $\left.6-\mathrm{H}_{\mathrm{eq}}\right), 4.75-4.82(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 5.53(1 \mathrm{H}$, ddd, $J 12.0,6.0$ and $5.6,3-\mathrm{H}), 7.01(1 \mathrm{H}$, br s, Im-4-H), 7.26-7.66 ($11 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}$ and $\mathrm{Im}-5-\mathrm{H}$) and $8.23(1 \mathrm{H}$, br s, Im-2-H); $\delta_{\mathrm{C}}(68.5) 19.0(\mathrm{CSi}), 23.7,25.1$ (both $\left.\mathrm{CH}_{2}\right), 26.7$ $\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.0\left(\mathrm{br}, \mathrm{CH}_{2}\right), 60.1(\mathrm{CH}), 60.2$ $\left(\mathrm{CH}_{2}\right), 79.6(\mathrm{CH}), 80.3,117.9$ (both C), 127.8, 127.9, 129.9,
129.9 (all CH), 132.9 (C), 135.5, 135.6 (both CH) and 154.7 (CO).

A solution of the thiocarbamate $23 \mathrm{c}(0.57 \mathrm{~g}, 1.0 \mathrm{mmol})$, tributyltin hydride ($0.29 \mathrm{~g}, 1.0 \mathrm{mmol}$) and azoisobutyronitrile $(6 \mathrm{mg})$ in toluene (10 ml) was refluxed for 2 h then cooled and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(9: 1)\right]$ gave the piperidine 25a $(0.24 \mathrm{~g}, 53 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.60$; $[a]_{\mathrm{D}}^{21}+21.7(c, 1.4$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1693 ; \delta_{\mathrm{H}}(270) 0.91\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.22-$ $2.01(6 \mathrm{H}, \mathrm{m}), 1.29\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.61(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 13.5$, $\left.6-\mathrm{H}_{\mathrm{ax}}\right), 3.68\left(2 \mathrm{H}, \mathrm{AB}, J_{\text {AB }} 10.5, \mathrm{CH}_{2} \mathrm{OSi}\right), 3.95(1 \mathrm{H}, \mathrm{br}$ d, $J 13.5$, $\left.6-\mathrm{H}_{\text {eq }}\right), 4.36\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}_{\text {eq }}\right)$ and $7.18-7.60(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$; $\delta_{\mathrm{C}}(68.5) 19.0\left(\mathrm{CH}_{2}\right), 19.1(\mathrm{CSi}), 24.8,25.3$ (both $\left.\mathrm{CH}_{2}\right), 26.8$ $\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.8\left(\mathrm{br}, \mathrm{CH}_{2}\right), 51.6(\mathrm{br}, \mathrm{CH}), 61.5$ $\left(\mathrm{CH}_{2}\right), 79.1(\mathrm{C}), 127.6,129.6$ (both CH), 133.6 (C), $135.6(\mathrm{CH})$ and $155.1(\mathrm{CO}) ; m / z 454\left(\mathrm{M}^{+}+\mathrm{H}, 4 \%\right), 397$ (21), 352 (12) and 199 (100) (Found: $\mathrm{M}^{+}+\mathrm{H}, 454.2777 . \mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{3} \mathrm{Si}$ requires $M, 454.2777$).

(2R)-O-(tert-Butyldiphenylsilyl)-1-(p-tolylsulfonyl)piperidine-2methanol 25b

Trifluoroacetic acid ($1.9 \mathrm{~g}, 16.6 \mathrm{mmol}$) was added to a stirred solution of the piperidine $\mathbf{2 5 a}(0.25 \mathrm{~g}, 0.55 \mathrm{mmol})$ in dichloromethane (20 ml). The resulting solution was stirred at ambient temperature for 1 h then diluted with dichloromethane (100 ml) and washed with saturated aqueous sodium hydrogen carbonate $(2 \times 20 \mathrm{ml})$ before drying and evaporating. The residue was dissolved in dichloromethane (5 ml) and the resulting solution added to a stirred solution of toluene- p-sulfonyl chloride (0.21 $\mathrm{g}, 1.1 \mathrm{mmol})$, triethylamine $(0.23 \mathrm{~g}, 2.2 \mathrm{mmol})$ and DMAP $(4 \mathrm{mg})$ in dichloromethane (5 ml). The mixture was stirred at ambient temperature overnight, diluted with dichloromethane $(50 \mathrm{ml})$ and washed with water $(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$ then dried and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(9: 1)\right]$ gave the N tosylate $\mathbf{2 5 b}(0.20 \mathrm{~g}, 70 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.45 ;[a]_{\mathrm{D}}^{22}-20.1$ (c, 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1343,1161$ and $1116 ; \delta_{\mathrm{H}}(270) 0.97$ $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.16-1.48(5 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{br}$ d, $J 11.0$, $\mathrm{H}_{\text {eq }}$, $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.76\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 11.4,6-\mathrm{H}_{\mathrm{ax}}\right), 3.53-$ $3.72\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}\right.$ and $\left.6-\mathrm{H}_{\mathrm{eq}}\right), 4.09-4.20\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right), 7.13$ $(2 \mathrm{H}, \mathrm{d}, J 8.2,2 \times \mathrm{Ts}-\mathrm{H})$ and $7.28-7.64(12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}$ and $2 \times \mathrm{Ts}-\mathrm{H}) ; \delta_{\mathrm{C}}(68.5) 18.4\left(\mathrm{CH}_{2}\right), 19.1(\mathrm{CSi}), 21.4\left(\mathrm{CH}_{3}\right), 24.2$, 24.4 (both $\left.\mathrm{CH}_{2}\right), 26.8\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 41.8\left(\mathrm{CH}_{2}\right), 53.4(\mathrm{CH}), 61.1$ $\left(\mathrm{CH}_{2}\right), 126.8,127.7,127.8,129.5,129.7,129.8($ all CH$), 133.2$, 133.3 (both C), $135.5(\mathrm{CH}), 138.6$ and 142.7 (both C); $m / z 450$ $\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 69 \%\right), 294$ (14), 239 (14), 238 (100) and 155 (13) (Found: $\mathrm{M}^{+}-\mathrm{Bu}^{t}$, 450.1557. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{SSi}$ requires M, 450.1559).

(2R)-N,O-Bis(p-tolylsulfonyl)piperidine-2-methanol 22

Tetrabutylammonium fluoride (TBAF; 0.6 ml of a 1 M solution in tetrahydrofuran, 0.6 mmol) was added to a stirred solution of the foregoing piperidine $\mathbf{2 5 b}(0.15 \mathrm{~g}, 0.2 \mathrm{mmol})$ in tetrahydrofuran (0.5 ml) which was then stirred overnight at ambient temperature and diluted with dichloromethane (100 ml). The resulting solution was washed with water $(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$ then dried and filtered through silica gel. Evaporation of the filtrates left the alcohol $\mathbf{2 5 c}(54 \mathrm{mg}, 68 \%)$ as a colourless oil, $[a]_{\mathrm{D}}^{23}+17.3\left(c, 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1} 1354,1184$ and 1115 ; $\delta_{\mathrm{H}}(400) 1.00-1.38(5 \mathrm{H}, \mathrm{m}), 1.52\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.5, \mathrm{H}_{\mathrm{eq}}\right), 2.24$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.90\left(1 \mathrm{H}\right.$, br t, $\left.J 11.4,6-\mathrm{H}_{\mathrm{ax}}\right), 3.46(1 \mathrm{H}, \mathrm{dd}$, $J 11.4$ and $7.0,6-\mathrm{H}_{\mathrm{eq}}$), $3.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.87-3.95(1 \mathrm{H}, \mathrm{m}$, $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 7.13(2 \mathrm{H}, \mathrm{d}, J 8.2,2 \times \mathrm{Ts}-\mathrm{H})$ and $7.59(2 \mathrm{H}, \mathrm{d}, J 8.2$, $2 \times \mathrm{Ts}-\mathrm{H}) ; \delta_{\mathrm{C}}(100) 18.4\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 23.6,24.0,41.0($ all CH_{2}), $53.9(\mathrm{CH}), 59.8\left(\mathrm{CH}_{2}\right), 128.5,129.3$, (both CH), 138.0 and 142.9 (both C); $m / z 238\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}, 100 \%\right), 84$ (12) and 83 (8) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}, 238.0863 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}$ requires M, 238.0902).

The foregoing alcohol $\mathbf{2 5 c}(50 \mathrm{mg}, 0.19 \mathrm{mmol})$ was added to a solution of triethylamine ($21 \mathrm{mg}, 0.2 \mathrm{mmol}$) and DMAP (2 mg) in dichloromethane (10 ml), followed by toluene- p-sulfonyl
chloride ($39 \mathrm{mg}, 0.2 \mathrm{mmol}$). The resulting mixture was stirred at ambient temperature overnight, diluted with dichloromethane $(20 \mathrm{ml})$, washed with water $(5 \mathrm{ml})$ and brine $(5 \mathrm{ml})$ then dried and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ - EtOAc (9:1)] separated the bistosylate 22 ($55 \mathrm{mg}, 75 \%$) as a colourless oil (lit., ${ }^{21}$ oil), $R_{\mathrm{F}} 0.40$; $[a]_{\mathrm{D}}^{23}+55.0(c, 0.8, \mathrm{EtOH})\left\{\right.$ lit., ${ }^{21}[a]_{\mathrm{D}}^{18}+56.6(c, 1.03, \mathrm{EtOH})$ for (R)-22 $\} ; v_{\text {max }} / \mathrm{cm}^{-1} 1362,1190,1177$ and 1160; δ_{H} (400) $1.20-$ $1.53(5 \mathrm{H}, \mathrm{m}), 1.68\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.4, \mathrm{H}_{\mathrm{eq}}\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$, $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.81\left(1 \mathrm{H}\right.$, br t, $\left.J 12.2,6-\mathrm{H}_{\mathrm{ax}}\right), 3.69(1 \mathrm{H}$, br d, $J 12.2,6-\mathrm{H}_{\mathrm{eq}}$), 4.01-4.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTs}$), $4.18-4.29(1 \mathrm{H}$, $\left.\mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right), 7.26(2 \mathrm{H}, \mathrm{d}, J 8.2,2 \times \mathrm{Ts}-\mathrm{H}), 7.40(2 \mathrm{H}, \mathrm{d}, J 8.2$, $2 \times \mathrm{Ts}-\mathrm{H}), 7.66(2 \mathrm{H}, \mathrm{d}, J 8.2,2 \times \mathrm{Ts}-\mathrm{H})$ and $7.73(2 \mathrm{H}, \mathrm{d}, J 8.2$, $2 \times \mathrm{Ts}-\mathrm{H}) ; \delta_{\mathrm{C}}(100) 18.2\left(\mathrm{CH}_{2}\right), 21.4,21.5$ (both $\left.\mathrm{CH}_{3}\right), 24.0$, 24.3, $41.3\left(\right.$ all $\left.\mathrm{CH}_{2}\right), 50.4(\mathrm{CH}), 66.8\left(\mathrm{CH}_{2}\right), 126.7,127.8,129.7$, 129.9 (all CH), 132.4, 137.7, 143.2 and 145.0 (all C); $m / z 238$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OTs}, 100 \%\right)$ and 91 (43) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OTs}$, 238.0889. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}$ requires $M, 238.0902$) (Found: C, 57.0 ; $\mathrm{H}, 6.0 ; \mathrm{N}, 3.5 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}_{2}$ requires $\mathrm{C}, 56.7 ; \mathrm{H}, 6.0$; $\mathrm{N}, 3.3 . \%$).

A sample of racemic bis-tosylate was obtained from (\pm)-piperidine-2-methanol by the foregoing method, but using 2.2 equivalents of toluene- p-sulfonyl chloride, and showed identical spectroscopic and analytical data as the foregoing sample, with the exception of an optical rotation.

(3R,4S)-1-(tert-Butyl) 3-ethyl 4-hydroxypiperidine-1,3-dicarboxylate 26

The ethyl 4-oxopiperidine-3-carboxylate $\mathbf{1 7}(5.0 \mathrm{~g}, 18.5 \mathrm{mmol})$ was reduced by fermenting yeast in an identical fashion to that described above for the preparation of the corresponding 3-hydroxy-2-carboxylate 20 and gave the 4-hydroxy-3-carboxylate $26(3.73 \mathrm{~g}, 74 \%)$ as a colourless solid, $\mathrm{mp} 58-60^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{23}$ $+25.6\left(c, 3.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3414,1732$ and $1668 ; \delta_{\mathrm{H}}(400$; $333 \mathrm{~K}) 1.21\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.43\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.55-1.62\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{ax}}\right), 1.81(1 \mathrm{H}$, dddd, $J 13.9,4.5,3.3$ and $\left.3.3,5-\mathrm{H}_{\mathrm{eq}}\right), 2.51\left(1 \mathrm{H}\right.$, ddd, $J 10.4,4.4$ and $\left.2.6,3-\mathrm{H}_{\mathrm{ax}}\right), 3.19(1 \mathrm{H}$, ddd, $J 14.0,11.0$ and $3.0,6-\mathrm{H}_{\text {ax }}$), $3.34(1 \mathrm{H}, \mathrm{dd}, J 14.0$ and 10.4 , $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 3.59\left(1 \mathrm{H}\right.$, ddd, $J 14.0,4.5$ and $\left.3.7,6-\mathrm{H}_{\mathrm{eq}}\right), 3.86(1 \mathrm{H}, \mathrm{dd}$, $J 14.0$ and $\left.4.4,2-\mathrm{H}_{\mathrm{eq}}\right), 4.12\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2}\right)$ and $4.15-4.25$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$); δ_{C} (100) 13.9, 28.1 (both CH_{3}), 31.3, 38.1 (br), 40.3 (br, all CH_{2}), $45.6(\mathrm{CH}), 60.7\left(\mathrm{CH}_{2}\right), 64.8(\mathrm{sl} . \mathrm{br}, \mathrm{CH}), 79.5$, 154.5 and 172.5 (all C); m/z $273\left(\mathrm{M}^{+}, 2 \%\right)$, 216 (32), 200 (15), 172 (23), 154 (21), 126 (44), 100 (30), 82 (82) and 57 (100) (Found: $\mathrm{M}^{+}, 273.1600, \mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires M, 273.1576) (Found: C, 57.0; H, 8.4; N, 5.1. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires C, $57.1 ; \mathrm{H}$, 8.5 ; N, 5.1\%).

(3R,4S)-1-tert-Butyl 3-ethyl 4-acetyloxypiperidine-1,3-dicarboxylate 28

To a stirred solution of the foregoing 4-hydroxypiperidine-3carboxylate $26(0.31 \mathrm{~g}, 1.1 \mathrm{mmol})$ in tetrahydrofuran (10 ml) was added acetic anhydride ($0.55 \mathrm{ml}, 5.7 \mathrm{mmol}$) and DMAP $(5 \mathrm{mg})$. After 0.5 h at ambient temperature, the volatiles were evaporated and the residue dissolved in ether (10 ml). The resulting solution was washed with saturated aqueous sodium hydrogen carbonate ($3 \times 2 \mathrm{ml}$) then dried and evaporated. CC [$40-60$ petrol-ether (2:1)] separated the acetate $28(0.26 \mathrm{~g}, 62 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.4 ; v_{\text {max }} / \mathrm{cm}^{-1} 1740$ and 1700; δ_{H} (400) $1.24\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.46\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.73(1 \mathrm{H}$, br t, $J c a .12 .8,5-\mathrm{H}_{\mathrm{ax}}$, $1.94\left(1 \mathrm{H}\right.$, ddd, $J 14.4,3.2$ and $3.0,5-\mathrm{H}_{\mathrm{eq}}$), $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.85\left(1 \mathrm{H}\right.$, ddd, $J 11.1,4.6$ and $\left.3.2,3-\mathrm{H}_{\mathrm{ax}}\right)$, $3.05\left(1 \mathrm{H}\right.$, apparent br t, $\left.J c a .11 .5,6-\mathrm{H}_{\mathrm{ax}}\right), 3.30(1 \mathrm{H}$, apparent br $\left.\mathrm{t}, J c a .10 .1,2-\mathrm{H}_{\mathrm{ax}}\right), 3.70-4.00\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{eq}}\right), 4.20-4.40(1 \mathrm{H}, \mathrm{m}$, $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 4.17-4.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$ and $5.48(1 \mathrm{H}$, apparent q , J ca. 3.2, 4-H); $\delta_{\mathrm{C}}\left(100 ; 377 \mathrm{~K}, \mathrm{~d}_{6}\right.$-DMSO) $17.2\left(\mathrm{CH}_{3}\right), 23.8$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 31.5\left(\mathrm{CH}_{3}\right), 31.7,42.4,44.4\left(\right.$ all $\left.\mathrm{CH}_{2}\right), 47.0(\mathrm{CH})$, $63.4\left(\mathrm{CH}_{2}\right), 71.5(\mathrm{CH}), 82.5,157.4,172.5$ and 173.2 (all C); m / z $258\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 8 \%\right), 214$ (10), 199 (10), 170 (6), 155 (21), 126 (43), 110 (26), 82 (97) and 57 (100) (Found: $\mathrm{M}^{+}-\mathrm{Bu}^{t}$, 258.0948. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{6}$ requires $M, 258.0978$).

(3S,4S)-tert-Butyl 4-hydroxy-3-(tert-butyldiphenylsilyloxy-methyl)piperidine-1-carboxylate 30b

A sample of the foregoing 4-hydroxy-3-carboxylate $26(2.0 \mathrm{~g}$, 7.3 mmol) was reduced using the same method $\left(\mathrm{LiAlH}_{4}\right)$ detailed above for the reduction of the 3-hydroxy-2-carboxylate 20 and gave the $\operatorname{diol} \mathbf{3 0 a}(1.22 \mathrm{~g}, 72 \%)$ as a thick, colourless oil, $R_{\mathrm{F}} 0.56 ;[a]_{\mathrm{D}}^{27}+16.0\left(c, 1.66, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3420$ and 1670 ; $\delta_{\mathrm{H}}(400) 1.45\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.60-1.91(3 \mathrm{H}, \mathrm{m}), 3.40-3.52$ $(2 \mathrm{H}, \mathrm{m})$ and $3.70-4.18(5 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}(68.5) 25.6\left(\mathrm{CH}_{2}\right), 28.4$ $\left(\mathrm{CH}_{3}\right), 32.0,39.3\left(\mathrm{br}\right.$, both $\left.\mathrm{CH}_{2}\right), 41.7(\mathrm{CH}), 62.5\left(\mathrm{CH}_{2}\right.$, sl. br), $67.4(\mathrm{CH}), 79.8$ and 155.3 (both C); $m / z 231\left(\mathrm{M}^{+}, 2 \%\right), 174$ (12), 157 (13), 126 (13), 112 (6), 100 (10), 82 (16) and 57 (100) (Found: M^{+}, 231.1501. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $M, 231.1471$).
The diol $30 \mathrm{a}(1.0 \mathrm{~g}, 4.3 \mathrm{mmol})$ was monosilylated using the same method as in the preparation of the silyl ether 23b to give the silyl ether $\mathbf{3 0 b}(1.60 \mathrm{~g}, 79 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.7 ;[\alpha]_{\mathrm{D}}^{21}$ $+10.6\left(c, 2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3422$ and $1665 ; \delta_{\mathrm{H}}(270) 1.06$ $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.43\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49-1.78(3 \mathrm{H}, \mathrm{m})$, $3.20-3.35(2 \mathrm{H}, \mathrm{m}), 3.75-3.92(4 \mathrm{H}, \mathrm{m}), 4.21\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}_{\mathrm{eq}}\right)$, 7.26-7.48 ($6 \mathrm{H}, \mathrm{m}$) and 7.62-7.71 ($4 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}(68.5 ; 333 \mathrm{~K}) 19.1$ (C), 26.8, 28.4 (both CH_{3}), 32.3, 38.7 (both CH_{2}), 41.4 (CH), 41.5, 65.6 (both CH_{2}), $67.9(\mathrm{CH}), 79.4(\mathrm{C}), 127.9,130.0$ (both $\mathrm{CH}), 132.5(\mathrm{C}), 135.6(\mathrm{CH})$ and $155.0(\mathrm{C}) ; ~ m / z\left(\mathrm{NH}_{3}\right.$ chemical ionization) $470\left(\mathrm{M}^{+}+\mathrm{H}, 45 \%\right), 414$ (36), 370 (100), 336 (73), 312 (11), 278 (21) and 258 (14) (Found: $\mathrm{M}^{+}+\mathrm{H}, 470.2701$. $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{4}$ Si requires $M, 470.2726$).

(3S)-tert-Butyl 3-(tert-butyldiphenylsilyloxymethyl)piperidine-1carboxylate 31a

Pentafluorophenyl chlorothioformate ($1.24 \mathrm{~g}, 4.7 \mathrm{mmol}$) was added to a stirred solution of the foregoing silyl ether $\mathbf{3 0 b}$ (0.37 $\mathrm{g}, 0.79 \mathrm{mmol})$, pyridine ($0.13 \mathrm{~g}, 1.6 \mathrm{mmol}$) and N-hydroxysuccinimide (18 mg) in benzene (20 ml). The mixture was refluxed for 5 h then cooled and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ EtOAc (9:1)] of the residue gave the thiocarbonate 30c $(0.50 \mathrm{~g}, 91 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.85 ; \delta_{\mathrm{H}}(270) 0.83[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.41\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49-2.38(3 \mathrm{H}, \mathrm{m}), 2.55-3.23$ $(2 \mathrm{H}, \mathrm{m}), 3.40-3.62(2 \mathrm{H}, \mathrm{m}), 3.72-4.04(2 \mathrm{H}, \mathrm{m}), 5.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.4-\mathrm{H}_{\mathrm{eq}}\right)$ and $7.24-7.65(10 \mathrm{H}, \mathrm{m})$. The sample was carried through to the next step without delay.
The thiocarbonate $30 \mathrm{c}(0.50 \mathrm{~g}, 0.72 \mathrm{mmol})$ was refluxed with tributyltin hydride ($0.21 \mathrm{~g}, 0.72 \mathrm{mmol}$) and azoisobutyronitrile (6 mg) in benzene (20 ml) for 0.5 h . The cooled solution was evaporated; $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right.$ (9:1)] of the residue gave the piperidine-3-methanol $\mathbf{3 1 a}(0.28 \mathrm{~g}, 58 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.70 ;[a]_{\mathrm{D}}^{25}+12.6\left(c, 1.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1665$; $\delta_{\mathrm{H}}(400) 1.00-1.30(2 \mathrm{H}, \mathrm{m}), 1.11\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.47[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.45-1.60(2 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{m}), 2.50-2.62(1 \mathrm{H}, \mathrm{m})$, 2.62-2.75 ($1 \mathrm{H}, \mathrm{m}$), 3.49-3.56 ($2 \mathrm{H}, \mathrm{m}$), $4.00(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}$, $\mathrm{m}), 7.30-7.42(6 \mathrm{H}, \mathrm{m})$ and $7.63-7.75(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100 ; 333 \mathrm{~K})$ 19.0 and $19.3(\mathrm{C}), 24.7\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{2}\right), 28.6$ $\left(\mathrm{CH}_{3}\right), 38.7(\mathrm{CH}), 44.4$ (sl. br), 47.5 (br), $66.4\left(\right.$ all $\left.\mathrm{CH}_{2}\right), 79.8$ (C), 127.7, 129.6, 129.7, (all CH), 133.7 (C), 134.9, 135.4, 135.6 (all CH) and $155.1(\mathrm{C}) ; m / z 454\left(\mathrm{M}^{+}+\mathrm{H}, 10 \%\right), 396(7), 352$ (35), 199 (100) and 198 (46) (Found: $\mathrm{M}^{+}+\mathrm{H}, 454.2778$. $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{3} \mathrm{Si}$ requires M, 454.2777).

(3S)- N-(p-Tolylsulfonyl)piperidine-3-methanol 31c

The foregoing N-Boc-piperidine 31a (0.20 g) was deprotected at nitrogen using trifluoroacetic acid, as described above for the 2 -isomer 25a, to give the free amine which was immediately treated with toluene- p-sulfonyl chloride, as described above, to give (3S)-O-(tert-butyldiphenylsilyl)- N -(p-tolylsulfonyl)piper-idine-3-methanol $\mathbf{3 1 b}(0.17 \mathrm{~g}, 74 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.60$; $[a]_{\mathrm{D}}^{25}-22.3\left(c, 1.1, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1673,1361$ and 1114; δ_{H} (270) $1.03\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.42-1.97(4 \mathrm{H}, \mathrm{m}), 2.12(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J 10.5), 2.26(1 \mathrm{H}, \mathrm{td}, J 11.7$ and 3.5$), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.41-$ $3.78(5 \mathrm{H}, \mathrm{m}), 7.28-7.46(8 \mathrm{H}, \mathrm{m})$ and $7.58-7.68(6 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$
(68.5) $14.0\left(\mathrm{CH}_{3}\right), 19.2(\mathrm{C}), 24.1,25.6$ (both $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{3}\right)$, $38.2(\mathrm{CH}), 46.7,60.3,66.0($ all CH2 $), 127.6,129.3$ and 129.5 (all CH), 133.2 and 133.3 (both C), 134.3, 135.6 (both CH) and 143.3 (C); m/z $450\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 1 \%\right), 199$ (100), 78 (7) and 77 (12) (Found: $\mathrm{M}^{+}-\mathrm{Bu}^{t}, 450.1576 . \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{SSi}$ requires M, 450.1559).

The foregoing N-tosylate $\mathbf{3 1 b}(0.10 \mathrm{~g}, 0.2 \mathrm{mmol})$ was deprotected at oxygen using TBAF, exactly as outlined in the preparation of the corresponding piperidine-2-methanol 25 c , and gave the piperidine-3-methanol $\mathbf{3 1 c}(53 \mathrm{mg}, 78 \%$) as a colourless oil, $[a]_{D}^{21}-16.5\left(c, 3.0, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3304,1379$ and 1149 ; $\delta_{\mathrm{H}}(270) 0.99-1.10(1 \mathrm{H}, \mathrm{m}), 1.50-1.97(3 \mathrm{H}, \mathrm{m}), 2.24(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, J ca. 11), $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.29-2.53(1 \mathrm{H}, \mathrm{m}), 3.18-3.71$ $(5 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{d}, J 8.3,2 \times \mathrm{Ar}-\mathrm{H})$ and $7.62(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}(68.5) 21.4\left(\mathrm{CH}_{3}\right), 23.9,26.1$ (both $\left.\mathrm{CH}_{2}\right), 38.0(\mathrm{CH}), 46.5$, 49.0, 64.7 (all CH_{2}), 127.6, 129.5 (both CH), 133.0 and 143.4 (both C); $m / z 269\left(\mathrm{M}^{+}, 1 \%\right), 115$ (8), 114 (100), 91 (69), 84 (7) and 83 (6) (Found: C, 58.2; H, 7.2; N, 5.4. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 58.0; H, 7.1; N, 5.2\%).

(3S)-N,O-Bis(p-tolylsulfonyl)piperidine-3-methanol 31d

The foregoing alcohol ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) was converted into the bis-tosylate 31d ($46 \mathrm{mg}, 63 \%$), as described above for the corresponding 2 -isomer 22. The compound 31d crystallized from methanol as a colourless solid, $\mathrm{mp} 88-89^{\circ} \mathrm{C}\left[\right.$ lit. ${ }^{29} \mathrm{mp} 87-$ $89^{\circ} \mathrm{C}$ for the (R)-enantiomer], $[a]_{\mathrm{D}}^{25}-50.2\left(c, 1.1, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit., ${ }^{29}$ $[a]_{\mathrm{D}}^{25}+54\left(c, 1.0, \mathrm{CHCl}_{3}\right)$ for the (R)-enantiomer $\} ; v_{\text {max }} / \mathrm{cm}^{-1}$ 1359,1342 and $1175 ; \delta_{\mathrm{H}}(400) 1.03-1.11(1 \mathrm{H}, \mathrm{m}), 1.49-1.65$ $(2 \mathrm{H}, \mathrm{m}), 1.93-1.97(1 \mathrm{H}, \mathrm{m}), 2.22(1 \mathrm{H}$, apparent $\mathrm{t}, J 9.5), 2.31-$ $2.41\left(1 \mathrm{H}, \mathrm{m}\right.$, partly obsc.), $2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.44(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Ar}\right), 2.48-2.55(1 \mathrm{H}, \mathrm{m}), 3.39-3.47(2 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{dd}$, $J 10.0$ and $\left.6.6, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OTs}\right), 3.91(1 \mathrm{H}$, dd, $J 10.0$ and 6.0 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OTs}\right), 7.25(2 \mathrm{H}, \mathrm{d}, J 8.3,2 \times \mathrm{Ar}-\mathrm{H}), 7.30(2 \mathrm{H}, \mathrm{d}, J 8.3$, $2 \times \mathrm{Ar}-\mathrm{H}), 7.55(2 \mathrm{H}, \mathrm{d}, J 8.3,2 \times \mathrm{Ar}-\mathrm{H})$ and $7.72(2 \mathrm{H}, \mathrm{d}, J 8.3$, $2 \times \mathrm{Ar}-\mathrm{H}$); δ_{C} (100) 21.5, 21.7 (both CH_{3}), 23.5, 25.7 (both CH_{2}), 35.1 (CH), 46.6, 48.3, 71.4 (all CH_{2}), 127.6, 127.9, 129.0, 129.7, (all CH), 132.6, 132.9, 143.6 and 145.0 (all C); $m / z 269$ $\left(\mathrm{M}^{+}-\mathrm{Ts}+\mathrm{H}, 4 \%\right), 268$ (27), 252 (4), 97 (7), 96 (100), 91 (50), 82 (6) and 69 (22) (Found: C, 56.8; H, 6.0; N, 3.2. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}_{2}$ requires C, $56.7 ; \mathrm{H}, 6.0 ; \mathrm{N}, 3.3 \%$).

A sample of racemic bis-tosylate was obtained from (\pm)-piperidine-3-methanol by the same method, but using 2.2 equivalents of toluene- p-sulfonyl chloride; the product had mp $87-89^{\circ} \mathrm{C}$ and did not show an optical rotation but was otherwise identical according to spectroscopic and analytical analysis.

(3R,4R)-4-Ethyl 1-methyl 3-hydroxypiperidine-1,4-dicarboxylate 32

The N-methoxycarbonyl-3-oxopiperidine-4-carboxylate 18 (5.0 $\mathrm{g}, 21.8 \mathrm{mmol}$) was reduced with fermenting yeast exactly as described for the 3-oxo-2-carboxylate 16 and gave the 3-hydroxy-4-carboxylate 32 ($4.49 \mathrm{~g}, 89 \%$) as an oil, $[a]_{\mathrm{D}}^{21}-21.4$ (c, 1.1, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3460,1732$ and $1690 ; \delta_{\mathrm{H}}(400) 1.28(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.76\left(1 \mathrm{H}\right.$, br d, $\left.J 13.5,5-\mathrm{H}_{\mathrm{eq}}\right), 2.07(1 \mathrm{H}$, dddd, J 13.5, 11.9, 11.9 and $\left.4.4,5-\mathrm{H}_{\mathrm{ax}}\right), 2.56(1 \mathrm{H}$, ddd, $J 11.9$, 4.0 and $\left.2.4,4-\mathrm{H}_{\mathrm{ax}}\right), 2.87\left(1 \mathrm{H}\right.$, br dd, $J 12.5$ and $\left.11.9,6-\mathrm{H}_{\mathrm{ax}}\right), 3.00$ $\left(1 \mathrm{H}, \mathrm{brd}\right.$ d $\left.J 13.0,2-\mathrm{H}_{\mathrm{ax}}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10-4.20(3 \mathrm{H}, \mathrm{m})$ and $4.21\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2}\right) ; \delta_{\mathrm{C}}(68.5) 14.0\left(\mathrm{CH}_{3}\right), 22.2,42.9$ (both CH_{2}), $45.1(\mathrm{CH}), 48.9\left(\mathrm{CH}_{2}\right), 52.9\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{2}\right), 64.9$ $(\mathrm{CH}$; sl. br), 156.6 and 171.0 (sl. br) (both CO); $m / z(\mathrm{FAB}) 232$ $\left(\mathrm{M}^{+}+\mathrm{H}, 100 \%\right), 214$ (14), 200 (21), 186 (13) and 172 (6) (Found: $\mathrm{M}^{+}+\mathrm{H}, 232.1175 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{5}$ requires M, 232.1185) (Found: C, 51.5; H, 8.1; N, 5.8. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $\mathrm{C}, 51.7 ; \mathrm{H}$, 7.8; N, 6.0\%),

(3R,4R)-4-Ethyl 1-methyl 3-acetoxypiperidine-1,4-dicarboxylate 34

To a solution of the foregoing 3-hydroxypiperidine-4-carboxyl-
ate $32(0.20 \mathrm{~g}, 0.87 \mathrm{mmol})$ in dry pyridine (1 ml) was added acetic anhydride $(0.08 \mathrm{ml}, 0.87 \mathrm{mmol})$ and the resulting solution stirred at ambient temperature overnight then diluted with ether (10 ml). The resulting solution was washed with saturated aqueous sodium hydrogen carbonate ($2 \times 5 \mathrm{ml}$) and saturated aqueous copper(II) sulfate ($2 \times 5 \mathrm{ml}$) then dried and filtered through silica. Evaporation of the filtrates left the acetate 34 $(0.13 \mathrm{~g}, 55 \%)$ as a colourless oil, $v_{\max } / \mathrm{cm}^{-1} 1739$ and $1704 ; \delta_{\mathrm{H}}$ $(400 ; 333 \mathrm{~K}) 1.15\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.77(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J \mathrm{c} a$. 11.7, $\left.5-\mathrm{H}_{\mathrm{eq}}\right), 1.80-2.05\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{ax}}\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.59\left(1 \mathrm{H}\right.$, ddd, $J 12.0,4.1$ and $\left.3.2,4-\mathrm{H}_{\mathrm{ax}}\right), 2.60-2.80(1 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{\mathrm{ax}}\right), 2.92\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J c a .12 .0,2-\mathrm{H}_{\mathrm{ax}}\right), 3.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.95-4.35(4 \mathrm{H}, \mathrm{m})$ and $5.10-5.25\left(1 \mathrm{H}\right.$, app br s, $\left.w_{\frac{2}{2}} 6.0,3-\mathrm{H}_{\mathrm{eq}}\right)$; $\delta_{\mathrm{C}}(68.5) 15.6\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3} \mathrm{CO}\right), 23.9,44.5\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 45.5$ $(\mathrm{CH}), 48.2\left(\mathrm{CH}_{2}\right), 54.1\left(\mathrm{CH}_{3}\right), 62.2\left(\mathrm{CH}_{2}\right), 68.8(\mathrm{CH}), 157.8$, 171.4 and 172.5 (all C); $m / z 228$ ($\mathrm{M}^{+}-\mathrm{OEt}, 4 \%$), 213 (19), 186 (18), 140 (100) and 43 (29) (Found: $\mathrm{M}^{+}-\mathrm{OEt}, 228.0832$. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{5}$ requires $M, 228.0870$).

(3R,4S)-Methyl 3-hydroxy-4-hydroxymethylpiperidine-1-carboxylate 35a

Sodium borohydride ($4.84 \mathrm{~g}, 130 \mathrm{mmol}$) was added in portions during 10 min to a stirred solution of the hydroxy ester $\mathbf{3 2}$ $(3.0 \mathrm{~g}, 13 \mathrm{mmol})$ in methanol $(100 \mathrm{ml})$, maintained at $0^{\circ} \mathrm{C}$. The resulting solution was stirred overnight with no further addition of coolant then evaporated. The residue was dissolved in dichloromethane (300 ml) and water (20 ml). The separated organic solution was washed with brine $(20 \mathrm{ml})$ then dried and evaporated. CC (EtOAc) gave the diol 35a ($1.70 \mathrm{~g}, 68 \%$) as a colourless oil, $R_{\mathrm{F}} 0.20 ; v_{\text {max }} / \mathrm{cm}^{-1} 3430$ and $1680 ; \delta_{\mathrm{H}}(270) 1.18-$ $1.85(3 \mathrm{H}, \mathrm{m}), 2.62-3.06(2 \mathrm{H}, \mathrm{m}), 3.55-3.84(2 \mathrm{H}, \mathrm{m}), 3.61(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right)$ and $3.90-4.20(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(68.5) 22.2\left(\mathrm{CH}_{2}\right), 41.2(\mathrm{CH})$, 43.7, $50.1\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 52.6\left(\mathrm{CH}_{3}\right), 64.4\left(\mathrm{CH}_{2}\right), 66.1(\mathrm{CH})$ and 156.9 (C); $m / z 189$ ($\mathrm{M}^{+}, 10 \%$), 171 (16), 153 (11), 151 (13), 141 (14), 140 (82), 130 (23), 115 (14), 102 (100), 88 (24), 83 (14), 71 (16) and 59 (20) (Found: $\mathrm{M}^{+}, 189.1045 . \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires M, 189.1001) (Found: C, $50.5 ; \mathrm{H}, 8.2 ; \mathrm{N}, 7.5 . \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, 50.8; H, 8.0; N, 7.4\%).

(1R,5S)-Methoxycarbonyl-2-oxa-8-azabicyclo[3.4.0]nonan-2one 36

The foregoing diol 35 a ($1.0 \mathrm{~g}, 5.3 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{ml})$ was added to a stirred solution of toluene- p-sulfonyl chloride ($1.11 \mathrm{~g}, 5.8 \mathrm{mmol}$) and triethylamine $(0.59 \mathrm{~g}, 5.8 \mathrm{mmol})$ in dichloromethane (25 ml). The mixture was stirred at ambient temperature overnight then diluted with dichloromethane (100 $\mathrm{ml})$ and the resulting suspension washed with water (20 ml), 2 M hydrochloric acid (30 ml) and brine (10 ml), then dried and evaporated. $\mathrm{CC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right.$ (1:1)] separated the monotosylate $\mathbf{3 5 b}(1.52 \mathrm{~g}, 84 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.60 ; v_{\mathrm{max}} / \mathrm{cm}^{-1}$ $3425,1678,1190$ and $1160 ; \delta_{\mathrm{H}}(400) 1.43(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.3,5-$ $\mathrm{H}_{\text {eq }}$, $1.51\left(1 \mathrm{H}\right.$, dddd, $J 13.3,12.8,12.8$ and $\left.4.4,5-\mathrm{H}_{\mathrm{ax}}\right) 1.94-$ $2.00\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right), 2.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{CH}_{3}\right)$, 2.73 ($1 \mathrm{H}, \mathrm{br} \mathrm{t}, J$ ca.11.8, 6-Hax $), 2.87$ (1 H , br d, $J 13.9,2-\mathrm{H}_{\mathrm{ax}}$), $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70-3.93(2 \mathrm{H}, \mathrm{m}), 4.07-4.19(3 \mathrm{H}, \mathrm{m}), 7.35$ $(2 \mathrm{H}, \mathrm{d}, J 8.2,2 \times \mathrm{Ts}-\mathrm{H})$ and $7.79(2 \mathrm{H}, \mathrm{d}, J 8.2,2 \times \mathrm{Ts}-\mathrm{H}) ; \delta_{\mathrm{C}}$ (68.5) $21.4\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{2}\right), 39.6(\mathrm{CH}), 43.2,49.8\left(\right.$ both $\left.\mathrm{CH}_{2}\right)$, $52.6\left(\mathrm{CH}_{3}\right), 63.9(\mathrm{CH}), 71.2\left(\mathrm{CH}_{2}\right), 127.7,129.7($ both $2 \times \mathrm{CH})$, 132.6, 144.7 and 156.7 (all C); $m / z 284\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 3 \%\right.$), 231 (5), 188 (5), 172 (6), 170 (5), 156 (10), 154 (15), 153 (100), 142 (10), 140 (34), 130 (11), 114 (21), 112 (14), 102 (49), 91 (30) and 88 (12) (Found: $\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}$, 284.0955. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}$ requires M, 284.0957).
The foregoing tosylate $\mathbf{3 5 b}(0.50 \mathrm{~g}, 1.5 \mathrm{mmol})$ was added to a stirred suspension of sodium cyanide ($0.18 \mathrm{~g}, 3.6 \mathrm{mmol}$) in dimethyl sulfoxide $(10 \mathrm{ml})$ and the mixture heated to $50^{\circ} \mathrm{C}$ for 6 h , then cooled and a small sample ($c a .0 .5 \mathrm{ml}$) removed, added to cold water $(5 \mathrm{ml})$ and the product extracted into dichloro-
methane $(2 \times 5 \mathrm{ml})$. The combined extracts were washed with water $(2 \times 3 \mathrm{ml})$ then dried and evaporated to leave essentially pure nitrile 35 c which showed $\delta_{\mathrm{H}} 1.54-1.77(2 \mathrm{H}, \mathrm{m}), 1.87-1.99$ $(1 \mathrm{H}, \mathrm{m}), 2.39\left(1 \mathrm{H}\right.$, dd, $J 12.2$ and $\left.5.8, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CN}\right), 2.53(1 \mathrm{H}$, dd, $J 12.2$ and $\left.6.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CN}\right), 2.80\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J c a .12 .0,6-\mathrm{H}_{\mathrm{ax}}\right)$, $2.93\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J c a .13 .5,2-\mathrm{H}_{\mathrm{ax}}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH}$) and $4.04-4.35(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 20.0,25.0\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 37.3$ $(\mathrm{CH}), 43.4,49.8\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 52.7(\mathrm{OMe}), 65.3(\mathrm{CH}), 118.7$ (CN) and 156.8 (CO). The sample was returned to the bulk of the DMSO solution which was then treated with concentrated hydrochloric acid $(50 \mathrm{ml})$ and the resulting solution stirred at ambient temperature overnight then extracted with dichloromethane ($3 \times 50 \mathrm{ml}$). The combined extracts were washed with water (20 ml) and brine (20 ml) then dried and evaporated. CC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ - EtOAc (1:1)] of the residue separated the lactone 36 $(0.26 \mathrm{~g}, 88 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.50 ;[a]_{\mathrm{D}}^{23}-22.4(c, 1.13$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1780$ and 1701; $\delta_{\mathrm{H}}(400) 1.27-1.55(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 1.69-1.83(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.26(1 \mathrm{H}, \mathrm{dd}, J 17.8$ and 2.0 , $\left.4-\mathrm{H}_{\mathrm{a}}\right), 2.44-2.58(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.67(1 \mathrm{H}, \mathrm{dd}, J 17.8$ and 7.6 , $\left.4-\mathrm{H}_{\mathrm{b}}\right), 2.76-3.05\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{ax}}\right), 3.25\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.5,9-\mathrm{H}_{\mathrm{ax}}\right)$, $3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.00-4.15\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\text {eq }}\right), 4.20(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.J 13.5,9-\mathrm{H}_{\mathrm{eq}}\right)$ and $4.37(1 \mathrm{H} \mathrm{br}$ res, $1-\mathrm{H})$; $\delta_{\mathrm{C}}(68.5) 26.5,30.1$ (both CH_{2}), $33.2(\mathrm{CH}), 41.6,44.6$ (both CH_{2}), $53.3\left(\mathrm{CH}_{3}\right), 76.4$ $(\mathrm{CH}), 156.6$ and 176.8 (both C); m/z $199\left(\mathrm{M}^{+}, 42 \%\right), 168$ (12), 154 (22), 140 (100), 114 (49), 102 (39) and 59 (18) (Found: M^{+}, 199.0840. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires $M, 199.0845$).

(3R,4R)-1-tert-Butyl 4-methyl 3-hydroxypiperidine-1,4-dicarboxylate 37

The N-tert-butoxycarbonyl-3-oxopiperidine-4-carboxylate 19 $(5.0 \mathrm{~g}, 19.45 \mathrm{mmol})$ was reduced with fermenting yeast exactly as described for the 3-oxo-2-carboxylate $\mathbf{1 6}$ and gave the 3 -hydroxy-4-carboxylate $37(4.08 \mathrm{~g}, 81 \%)$ as an oil, $[a]_{\mathrm{D}}^{25}-32.7$ (c, 1.0, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3450,1735$ and 1690; $\delta_{\mathrm{H}}(270) 1.46$ $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.73\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J \mathrm{ca} .13 .5,5-\mathrm{H}_{\mathrm{eq}}\right), 2.07(1 \mathrm{H}$, dddd, $J 13.5,11.5,11.5$ and $\left.4.5,5-\mathrm{H}_{\mathrm{ax}}\right), 2.56(1 \mathrm{H}$, ddd, $J 10.6$, 3.0 and $\left.3.0,4-\mathrm{H}_{\mathrm{ax}}\right), 2.83(1 \mathrm{H}$, ddd, $J c a .11 .5,11.5$ and 3.6 , $\left.6-\mathrm{H}_{\mathrm{ax}}\right), 2.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.2,2-\mathrm{H}_{\mathrm{ax}}\right), 3.73$ and $3.78(3 \mathrm{H}, 2 \times \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right)$ and 4.03-4.19 (3H, m); $\delta_{\mathrm{C}}(68.5) 22.2\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{3}\right)$, $42.8\left(\mathrm{CH}_{2}\right), 45.2(\mathrm{CH}), 48.9\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{CH}_{3}\right), 65.2(\mathrm{CH}), 79.8$ (C), 155.5 and 172.0 (both C); $m / z 200\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 7 \%\right), 158$ (16), 144 (43), 141 (8), 126 (14), 100 (72) and 57 (100) (Found: $\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}$, 200.1269. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3}$ requires M, 200.1287) (Found: C, $55.6 ; \mathrm{H}, 8.1 ; \mathrm{N}, 5.6 . \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires C, $55.6 ; \mathrm{H}$, 8.2; N, 5.4\%).

($3 R, 4 R$)-tert-Butyl 4-acetyl-3-(methoxymethoxy)piperidine-1 carboxylate 38a

Chloromethyl methyl ether ($6.22 \mathrm{~g}, 77.2 \mathrm{mmol}$) was added to an ice-cooled, stirred solution of the hydroxy ester 37 (4.0 g , 15.4 mmol) and diisopropylethylamine ($5.0 \mathrm{~g}, 38.6 \mathrm{mmol}$) in dichloromethane (200 ml). The resulting mixture was stirred overnight without further cooling then washed with 2 M hydrochloric acid $(2 \times 40 \mathrm{ml})$ and brine $(50 \mathrm{ml})$ then dried and evaporated. $\mathrm{CC}\left[\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1)\right]$ gave the MOM ether 38a ($4.3 \mathrm{~g}, 92 \%$) as a colourless oil, $R_{\mathrm{F}} 0.6,[a]_{\mathrm{D}}^{25}+23.4(c$, $\left.0.9, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1734$ and 1687; $\delta_{\mathrm{H}}(270) 1.46[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.74\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J \mathrm{ca} .13 .5,5-\mathrm{H}_{\mathrm{eq}}\right), 2.02(1 \mathrm{H}$, dddd, J ca. 13.5, 11.5, 11.5 and $4.0,5-\mathrm{H}_{\mathrm{ax}}$), $2.57(1 \mathrm{H}$, ddd, $J 11.5,3.0$ and $\left.3.0,4-\mathrm{H}_{\mathrm{ax}}\right), 2.64-2.89\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{ax}}\right), 2.97(1 \mathrm{H}$, br d, $J 13.2$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02-4.48$ $(3 \mathrm{H}, \mathrm{m}), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$ and $4.76(1 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}$); $\delta_{\mathrm{C}}(68.5) 22.4$ (sl. br, CH_{2}), $28.8\left(\mathrm{CH}_{3}\right), 42.6$ and 42.9 (br, CH_{2}), $45.8(\mathrm{CH}), c a .46 .1$ (br, CH_{2}), 52.1, 56.0 (both CH_{3}), 70.0 (sl. br; CH), $80.0(\mathrm{C}), 94.9$ (sl. br; $\mathrm{OCH}_{2} \mathrm{O}$), 154.8 and 172.0 (both C); m/z 244 ($\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 8 \%$), 202 (7), 188 (29), 158 (41), 144 (22), 112 (16), 98 (14), 71 (22) and 57 (100) (Found: $\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 244.1553 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{4}$ requires M, 244.1549).

Methyl (3R,4S)-1-(tert-butoxycarbonyl)-3-(methoxymethoxy)-piperidine-4-acetate 39
The foregoing O-MOM-ester 38 ($1.00 \mathrm{~g}, 3.3 \mathrm{mmol}$) was added to a stirred solution of potassium hydroxide $(0.92 \mathrm{~g}, 16.5 \mathrm{mmol})$ in water (10 ml). The resulting mixture was stirred at ambient temperature overnight, then washed with ether $(2 \times 3 \mathrm{ml})$ and acidified to pH 2 using 2 M citric acid. The liberated carboxylic acid was extracted into chloroform $(3 \times 30 \mathrm{ml})$. The combined extracts were dried and evaporated to leave the acid $\mathbf{3 8 b}$ (0.94 $\mathrm{g}, 98 \%$) as a thick, colourless oil, $v_{\max } / \mathrm{cm}^{-1} 3275$ and 1691 ; $\delta_{\mathrm{H}}(400) 1.45\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.68-1.80\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{eq}}\right), 2.03$ (1 H , dddd, J ca. 13.5, 11.5, 11.5 and $4.0,5-\mathrm{H}_{\mathrm{ax}}$), $2.63(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.J c a .12 .5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.70-2.86\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{ax}}\right), 2.87(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J c a$. $\left.14.0,2-\mathrm{H}_{\mathrm{ax}}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 3.92-4.49(3 \mathrm{H}, \mathrm{m}), 4.61$ $\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$ and $4.78\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ (68.5) $20.8\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 42.5$ and $42.9\left(\mathrm{br}, \mathrm{CH}_{2}\right), 45.1$ (CH), ca. $46.2\left(\mathrm{br}, \mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 69.2(\mathrm{br}, \mathrm{CH}), 79.7(\mathrm{C})$, 94.5 (br, $\mathrm{OCH}_{2} \mathrm{O}$), 155.0 and 176.9 (both C); m / z (FAB) 312 $\left(\mathrm{M}^{+}+\mathrm{Na}, 35 \%\right), 290\left(\mathrm{M}^{+}+\mathrm{H}, 66\right), 234(73), 202(100), 190$ (22), 172 (43), 158 (20) and 128 (33) (Found: $\mathrm{M}^{+}+\mathrm{H}$, 290.1614. $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{6}$ requires $M, 290.1604$).

Freshly distilled oxalyl chloride ($1.1 \mathrm{ml}, 8.6 \mathrm{mmol}$) was added to an ice-cold, stirred solution of the foregoing acid $\mathbf{3 8 b}(0.50 \mathrm{~g}$, 1.7 mmol) and dimethylformamide ($10 \mu \mathrm{l}$) in ether (25 ml). The resulting mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$ then for 1.5 h without cooling and the volatiles evaporated. The residue was dissolved in ether $(10 \mathrm{ml})$ and the resulting solution treated with an excess of ice-cold, ethereal diazomethane. After 16 h , the solvent was evaporated and the residue purified by CC [EtOAc$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1)\right]$ to give the diazo ketone 38c ($0.41 \mathrm{~g}, 75 \%$) as a colourless oil, $R_{\mathrm{F}} 0.5 ; v_{\text {max }} / \mathrm{cm}^{-1} 2253,1734$ and $1686 ; \delta_{\mathrm{H}}$ (250) $1.45\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 4.68(1 \mathrm{H}$, $\left.\mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and 5.31 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHN}_{2}$).
Silver benzoate (14 mg) and triethylamine (0.05 ml) were added to a solution of the diazo ketone $\mathbf{3 8 c}(0.41 \mathrm{~g})$ in methanol $(15 \mathrm{ml})$ and the mixture stirred overnight at ambient temperature then evaporated. $\mathrm{CC}\left[\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1)\right]$ of the residue gave the homologated ester $39(0.24 \mathrm{~g}, 62 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.6,[a]_{\mathrm{D}}^{25}+18.0\left(c, 1.4, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1740$ and 1684 ; $\delta_{\mathrm{H}}(400) 1.40-1.68(2 \mathrm{H}, \mathrm{m}), 1.45\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.77-1.91$ $(1 \mathrm{H}, \mathrm{m}), 2.05-2.60(2 \mathrm{H}, \mathrm{m}), 2.80\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 11.9,6-\mathrm{H}_{\mathrm{ax}}\right), 3.08-$ $3.20\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 3.69(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.10-4.40(3 \mathrm{H}, \mathrm{m}), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 7.0, O C H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$ and $4.75\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(68.5) 25.8\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right)$, $30.9\left(\mathrm{CH}_{2}\right), 34.5(\mathrm{CH}), 41.0,46.2$ (both CH_{2}), 51.9, 55.4 (both $\left.\mathrm{CH}_{3}\right), 69.7(\mathrm{CH}), 79.5(\mathrm{C}), 95.6\left(\mathrm{CH}_{2}\right), 154.8$ and 172.0 (both C); $m / z 216\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Bu}^{t}, 10 \%\right)$, 199 (43), 172 (16), 126 (40), 82 (45) and 57 (100) (Found: $\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Bu}^{t}$, 216.1238. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires $M, 216.1236$).

(3R)-3-Hydroxy-1-azabicyclo[2.2.2]octane [(R)-quinuclidin-3ol] 41b

Diisobutylaluminium hydride (1.7 ml of a 1.5 M solution in toluene, 2.52 mmol) was added dropwise to a stirred solution of the foregoing ester $39(0.20 \mathrm{~g}, 0.63 \mathrm{mmol})$ in toluene $(10 \mathrm{ml})$ maintained at $-78^{\circ} \mathrm{C}$. After 6 h at this temperature, saturated aqueous potassium tartrate (2 ml) was added followed by dichloromethane (100 ml). The resulting suspension was warmed to ambient temperature, washed with water $(2 \times 5 \mathrm{ml})$ and brine (10 ml) then dried and evaporated. CC [EtOAc$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)\right]$ of the residue gave the alcohol $40 \mathrm{a}(0.10 \mathrm{~g}, 55 \%)$ as a colourless oil, $R_{\mathrm{F}} 0.6 ; v_{\text {max }} / \mathrm{cm}^{-1} 3270$ and $1688 ; \delta_{\mathrm{H}}(250)$ $1.27-1.52\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {eq }}\right), 1.42\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.63(1 \mathrm{H}, \mathrm{ddd}$, $J 13.6,11.2$ and $\left.7.3,5-\mathrm{H}_{\mathrm{ax}}\right), 1.70-1.90(3 \mathrm{H}, \mathrm{m}), 2.60-2.85(2 \mathrm{H}$, m), $3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 3.54-3.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.85-$ $3.92\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{eq}}\right), 3.94-4.40(2 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{d}, J 7.0$, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$ and $4.80\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$.

Methanesulfonyl chloride ($0.7 \mathrm{~g}, 0.55 \mathrm{mmol}$) was added to a
stirred solution of the foregoing alcohol 40a ($80 \mathrm{mg}, 0.28$ mmol) and pyridine ($50 \mu \mathrm{l}$) in dichloromethane (5 ml) maintained at $0{ }^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was diluted with dichloromethane $(10 \mathrm{ml})$ and the suspension washed with water $(2 \times 5 \mathrm{ml})$ and brine (5 ml) then dried and evaporated to leave the mesylate $40 \mathrm{~b}(63 \mathrm{mg}, 62 \%)$ as a colourless oil, $v_{\text {max }} / \mathrm{cm}^{-1}$ 1690,1112 and $1160 ; \delta_{\mathrm{H}}(250) 1.36-1.78(3 \mathrm{H}, \mathrm{m}), 1.46[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.98-2.16(2 \mathrm{H}, \mathrm{m}), 2.49-2.87(2 \mathrm{H}, \mathrm{m}), 3.01(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{SO}_{2}$), $3.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 3.81-3.86(2 \mathrm{H}, \mathrm{m}), 4.03-4.51$ $(3 \mathrm{H}, \mathrm{m}), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$ and $4.80(1 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}$).

Trifluoroacetic acid (1.1 ml) was added to a stirred solution of the foregoing crude mesylate ($192 \mathrm{mg}, 0.51 \mathrm{mmol}$) in dichloromethane (15 ml). After 1 h , the solution was diluted with dichloromethane $(20 \mathrm{ml})$ and washed with saturated aqueous sodium hydrogen carbonate $(2 \times 10 \mathrm{ml})$ then dried and evaporated. The residue was dissolved in ethanol (10 ml) containing potassium carbonate (140 mg) and the mixture stirred and refluxed for 3 h , then cooled, filtered and evaporated. CC [MeOH -conc. $\left.\mathrm{NH}_{3}(19: 1)\right]$ gave the quinuclidine 41a (57 mg , 64%) as a colourless oil, $R_{\mathrm{F}} 0.4,[a]_{\mathrm{D}}^{25}-23.4(c, 1.0,1 \mathrm{~m} \mathrm{HCl})$; $\delta_{\mathrm{H}}\left(250 ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.86-1.97(2 \mathrm{H}, \mathrm{m}), 2.06-2.18(1 \mathrm{H}, \mathrm{m}), 2.21-$ $2.26(1 \mathrm{H}, \mathrm{m}), 2.28-2.40(1 \mathrm{H}, \mathrm{m}), 3.14(1 \mathrm{H}, \mathrm{ddd}, J 13.0,3.0$ and 3.0), 3.29-3.49 ($4 \mathrm{H}, \mathrm{m}$), $3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.71(1 \mathrm{H}$, ddd, $J 13.0,8.1$ and 3.0$), 4.24-4.29(1 \mathrm{H}, \mathrm{m})$ and $4.54(2 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{O}$); $\delta_{\mathrm{C}}\left(100 ; \mathrm{CD}_{3} \mathrm{OD}\right)$ 18.3, 21.9 (both CH_{2}), $28.5(\mathrm{CH})$, 51.9, $53.1\left(\right.$ both $\left.\mathrm{CH}_{2}\right), 61.1\left(\mathrm{CH}_{3}\right), 61.6\left(\mathrm{CH}_{2}\right), 65.0(\mathrm{CH})$ and $92.8\left(\mathrm{CH}_{2}\right)$.

Concentrated hydrochloric acid (2 ml) was added to the foregoing quinuclidine $41 \mathrm{a}(50 \mathrm{mg})$ in ethanol $(4 \mathrm{ml})$ and the resulting solution stirred and refluxed for 0.25 h then cooled and concentrated. CC [MeOH-conc. $\left.\mathrm{NH}_{3}(9: 1)\right]$ separated the quinuclidinol 41b ($28 \mathrm{mg}, 78 \%$) as a colourless oil, $R_{\mathrm{F}} 0.15$, which soon solidified to a solid, $\mathrm{mp} 217-219^{\circ} \mathrm{C}$ (lit., ${ }^{33} \mathrm{mp} 223-$ $224^{\circ} \mathrm{C}$), which showed $[a]_{\mathrm{D}}^{25}-39.5(c, 0.5,1 \mathrm{~m} \mathrm{HCl})\left\{\right.$ lit., ${ }^{33}[a]_{\mathrm{D}}^{25}$ $+45.8(c, 3.0,1 \mathrm{~m} \mathrm{HCl})$ for the (S)-enantiomer $\} ; v_{\max } / \mathrm{cm}^{-1}$ $3450 ; \delta_{\mathrm{H}}(400) 1.12-1.47(2 \mathrm{H}, \mathrm{m}), 1.48-1.78(2 \mathrm{H}, \mathrm{m}), 1.79-2.00$ $(1 \mathrm{H}, \mathrm{m}), 2.39-2.90(5 \mathrm{H}, \mathrm{m}), 2.90-3.09(1 \mathrm{H}, \mathrm{m}), 3.61-3.78(1 \mathrm{H}$, $\mathrm{m})$ and $5.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}(100)$ 18.7, 24.5 (both CH_{2}), $28.1(\mathrm{CH}), 46.1,47.1,57.7\left(\mathrm{all} \mathrm{CH}_{2}\right)$ and $66.7\left(\mathrm{CH}_{2}\right)$. The NMR data were identical to those recorded for racemic material (Aldrich). ${ }^{34}$ Under the above conditions ($c, 0.5,1 \mathrm{~m} \mathrm{HCl}$), an authentic sample of the (R)-(-)-enantiomer 41b (Acros; $99 \%+$) showed $[a]_{\mathrm{D}}^{23}-44.8$.

Acknowledgements

We are very grateful to SmithKline Beecham Pharmaceuticals, Eli Lilly and Co Ltd and the EPSRC for financial support under the CASE Scheme. We also thank the EPSRC Mass Spectrometry service at Swansea University for the provision of some high resolution mass spectral data and the Royal Society for a Leverhulme Senior Research Fellowship (to D. W. K.).

References

1 For recent reviews, see K. Drauz and H. Waldmann, Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, VCH, Weinheim and New York, 1995; C.-H. Wong and G. M. Whitesides, Enzymes in Synthetic Organic Chemistry, Tetrahedron Organic Chemistry Series, Pergamon, Oxford, 1994; Preparative Biotransformations, ed. S. M. Roberts, Wiley, New York, 1992.
2 S. Servi, Synthesis, 1990, 1; R. Csuk and B. I. Glänzer, Chem. Rev., 1991, 91, 49.
3 M. Kitamura, M. Tokunaga, T. Ohkuma and R. Noyori, Org. Synth., 1992, 71, 1 and references cited therein.
4 B. S. Deol, D. D. Ridley and G. W. Simpson, Aust. J. Chem., 1976, 29, 2459.
5 R. W. Hoffmann and W. Ladner, Chem. Ber., 1983, 116, 1631; R. W. Hoffmann, W. Ladner and W. Helbig, Liebigs Ann. Chem., 1984, 1170.
6 D. Seebach, S. Roggo, T. Maetzke, H. Braunschweiger, J. Cercus and M. Krieger, Helv. Chim. Acta, 1987, 70, 1605.

7 J. Cooper, D. W. Knight and P. T. Gallagher, J. Chem. Soc., Perkin Trans. 1, 1993, 1313.
8 For reviews, see F. J. Sarsina and H. Rapoport, Chem. Rev., 1996, 96, 1825; W.-M. Dai, Y. Nagao and E. Fujita, Heterocycles, 1990, 30, 1231; D. W. Knight and E. L. Trown, Curr. Org. Chem., 1997, 1, 95. For recent applications, see S. Murahashi, H. Ohtake and Y. Imada, Tetrahedron Lett., 1998, 39, 2765; D. W. Knight, A. C. Share and P. T. Gallagher, J. Chem. Soc., Perkin Trans. 1, 1997, 2089 and references cited therein.
9 GABA in Nervous System Function, ed. E. Roberts, T. N. Chase and D. B. Tower, Raven Press, New York, 1976; GABA Neurotransmitters. Pharmacochemical, Biochemical and Pharmacological Aspects, ed. P. K. Larsen, S. Kruger and H. Kofod, Munksgaard, Copenhagen, 1979.
10 Amino Acids as Neurotransmitters, ed. P. K. Larsen and F. I. Fonnum, Plenum, New York, 1978.
11 P. K. Larsen and J. Arndt, J. Adv. Exp. Med. Biol., 1979, 123, 303.
12 M. Yanai, T. Sugai and K. Mori, Agric. Biol. Chem., 1985, 49, 2373; D. W. Brooks, H. Mazdiyasni and P. G. Grothaus, J. Org. Chem., 1987, 52, 3223. For a review, see K. Mori, Synlett., 1995, 1097.
13 J. Cooper, D. W. Knight and A. C. Share, unpublished observations.
14 D. W. Knight, N. Lewis, A. C. Share and D. Haigh, Tetrahedron: Asymmetry, 1993, 4, 625.
15 M. P. Moyer, P. L. Feldman and H. Rapoport, J. Org. Chem., 1985, 50, 5223.
16 H. Plieninger and S. Leonhäuser, Chem. Ber., 1959, 92, 1579; J. Blake, C. D. Willson and H. Rapoport, J. Am. Chem. Soc., 1964, 86, 5293.
17 O. Keller, W. E. Keller, G. van-Look and G. Wersin, Org. Synth., 1984, 63, 160.
18 D. W. Knight and A. W. Sibley, J. Chem. Soc., Perkin Trans. 1, 1997, 2179 and references cited therein.
19 D. Seebach, M. A. Sutter, R. H. Weber and M. F. Züger, Org. Synth., 1984, 63, 1.
20 Y. L. Chow, C. J. Colon and J. N. S. Tam, Can. J. Chem., 1968, 46, 2821.

21 H. Ripperger and K. Schreiber, Tetrahedron, 1965, 21, 1485.
22 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, 1975, 1574.
23 R. C. Roemmele and H. Rapoport, J. Org. Chem., 1989, 54, 1866.
24 C. H. Sugisaki, P. J. Carroll and C. R. D. Correia, Tetrahedron Lett., 1998, 39, 3413.
25 C. Greck, F. Ferreira and J. P. Genet, Tetrahedron Lett., 1996, 37, 2031; F. Ferreira, C. Greck and J. P. Genet, Bull. Soc. Chim. Fr., 1997, 134, 615; C. Agami, F. Couty and H. Mathieu, Tetrahedron Lett., 1996, 37, 4001; L. Battistini, F. Zanardi, G. Rassu, P. Spanu, G. Pelosi, G. G. Fava, M. B. Ferrari and G. Casiraghi, Tetrahedron: Asymmetry, 1997, 8, 2975.
26 G. Kusano, H. Ogawa, A. Takahashi, S. Nozoe and K. Yokoyama, Chem. Pharm. Bull., 1987, 35, 3482; G. Makara and G. R. Marshall, Tetrahedron Lett., 1997, 38, 5069.
27 J. D. Scott, T. N. Tippie and R. M. Williams, Tetrahedron Lett., 1998, 39, 3659.
28 For related analyses, see P. Jacobsen, I. M. Labouta, K. Schaumburg, E. Falch and P. K. Larsen, J. Med. Chem., 1982, 25, 1157; K. Schaumburg, L. Brehm and P. K. Larsen, Acta Chem. Scand., Ser. B, 1981, B35, 99.
29 G. Bettoni, E. Duranti and V. Tortorella, Gazz. Chim. Ital., 1972, 102, 189.
30 T. Moriwake, S.-I. Hamano and S. Saito, Heterocycles, 1988, 27, 1135.

31 D. H. R. Barton and J. C. Jaszberenyi, Tetrahedron Lett., 1989, 30, 2619.

32 G. J. W. Fleet, K. James and R. J. Lunn, Tetrahedron Lett., 1986, 27, 3053; G. W. J. Fleet, K. James, R. J. Lunn and C. J. Mathews, Tetrahedron Lett., 1986, 27, 3057.
33 R. W. Baker and P. J. Pauling, J. Chem. Soc., Perkin Trans. 2, 1972, 2340; Dictionary of Organic Compounds, Chapman and Hall, New York, 5th edn., 1982.
34 Atlas of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, Aldrich, 1993.
35 R. Bhide, R. Martezaei, A. Scilimati and C. J. Sih, Tetrahedron Lett., 1990, 31, 4827.
36 M. P. Sibi and J. W. Christensen, Tetrahedron Lett., 1990, 31, 5689; K. Nakamura, Y. Kawai, S. Oka and A. Ohno, Tetrahedron Lett., 1989, 30, 2245; M. Kierstan and C. Bucke, Biotechnol. Bioeng., 1977, 19, 387.
37 D. P. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 2nd edn., 1985.
38 W. Reppe, Liebigs Ann. Chem., 1955, 596, 213.
Paper 8/07313I

[^0]: \dagger Present address: Chemistry Department, Cardiff University, PO Box

